A084553
Number of n X n symmetric positive semi-definite matrices with 2's on the main diagonal and -1's and 0's elsewhere.
Original entry on oeis.org
1, 2, 8, 45, 338, 3178, 34346, 396659, 4694705
Offset: 1
The 5 X 5 matrix
2 -1 -1 -1 -1
-1 2 -1 -1 -1
-1 -1 2 -1 -1
-1 -1 -1 2 -1
-1 -1 -1 -1 2
with eigenvalues -2, 3, 3, 3, 3 is an example of one which is not positive semi-definite.
A127502
Number of n X n positive definite matrices with 1's on the main diagonal and -1's and 0's elsewhere.
Original entry on oeis.org
1, 3, 19, 201, 3001, 55291, 1115003, 21837649, 373215601, 8282131891
Offset: 1
For n = 2 the three matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {-1, 1}}, {{1, -1}, {0, 1}}}.
-
{ a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = local(t); if(k> n, t=0; for(i=1,n, for(j=1,i-1, if(M[i,j]==1,t++); )); r+=2^t; return; ); forvec(x=vector(k-1,i,[ -1,0]), for(i=1,k-1,M[k,i]=M[i,k]=x[i]); if( matdet(vecextract(M,2^k-1,2^k-1),1)>0, b(k+1) ) ) } (Alekseyev)
Showing 1-2 of 2 results.
Comments