A127512 Triangle read by rows: T(n,k)= mobius(n)*binomial(n-1,k-1).
1, -1, -1, -1, -2, -1, 0, 0, 0, 0, -1, -4, -6, -4, -1, 1, 5, 10, 10, 5, 1, -1, -6, -15, -20, -15, -6, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, -1, -10, -45, -120, -210, -252, -210, -120, -45, -10, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
First few rows of the triangle: 1; -1, -1; -1, -2, -1; 0, 0, 0, 0; -1, -4, -6, -4, -1; 1, 5, 10, 10, 5, 1; ...
Links
- James C. McMahon, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A127512 := proc(n,k) numtheory[mobius](n)*binomial(n-1,k-1) ; end proc: seq(seq( A127512(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
-
Mathematica
T[n_,k_]:= MoebiusMu[n]*Binomial[n-1,k-1];Table[T[n,k],{n,12},{k,n}]//Flatten (* James C. McMahon, Jan 02 2025 *)
-
PARI
row(n) = my(M = matrix(n, n, i, j, if (i==j, moebius(i))), P = matrix(n, n, i, j, binomial(i-1, j-1))); vector(n, k, (M*P)[n, k]); \\ Michel Marcus, Feb 15 2022
Formula
Extensions
Edited by N. J. A. Sloane, Sep 25 2008
NAME simplified by R. J. Mathar, Aug 15 2022
Comments