cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127512 Triangle read by rows: T(n,k)= mobius(n)*binomial(n-1,k-1).

Original entry on oeis.org

1, -1, -1, -1, -2, -1, 0, 0, 0, 0, -1, -4, -6, -4, -1, 1, 5, 10, 10, 5, 1, -1, -6, -15, -20, -15, -6, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, -1, -10, -45, -120, -210, -252, -210, -120, -45, -10, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 17 2007

Keywords

Comments

Could also be defined as the matrix product of A128407 and A007318.
A013929 gives the indices of rows that are all zeros. - Michel Marcus, Feb 15 2022

Examples

			First few rows of the triangle:
   1;
  -1, -1;
  -1, -2, -1;
   0,  0,  0,  0;
  -1, -4, -6, -4, -1;
   1,  5, 10, 10,  5, 1;
  ...
		

Crossrefs

Cf. A007318, A008683, A013929, A127511 (row sums).
Cf. A127514 (P*M).

Programs

  • Maple
    A127512 := proc(n,k)
        numtheory[mobius](n)*binomial(n-1,k-1) ;
    end proc:
    seq(seq( A127512(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
  • Mathematica
    T[n_,k_]:= MoebiusMu[n]*Binomial[n-1,k-1];Table[T[n,k],{n,12},{k,n}]//Flatten (* James C. McMahon, Jan 02 2025 *)
  • PARI
    row(n) = my(M = matrix(n, n, i, j, if (i==j, moebius(i))), P = matrix(n, n, i, j, binomial(i-1, j-1))); vector(n, k, (M*P)[n, k]); \\ Michel Marcus, Feb 15 2022

Formula

T(n,k) = mu(n)*binomial(n-1,k-1) = A008683(n)*A007318(n-1,k-1). - R. J. Mathar, Aug 15 2022

Extensions

Edited by N. J. A. Sloane, Sep 25 2008
NAME simplified by R. J. Mathar, Aug 15 2022