A127524 Number of unordered rooted trees where each subtree from given node has the same number of nodes.
1, 1, 2, 3, 5, 6, 11, 12, 20, 25, 42, 43, 81, 82, 150, 192, 287, 288, 563, 564, 982, 1277, 2182, 2183, 3658, 3785, 7108, 8659, 13101, 13102, 27827, 27828, 47768, 61025, 102355, 105689, 170882, 170883, 329651, 421547, 606283, 606284, 1193038, 1193039, 2158117
Offset: 1
Keywords
Examples
The tree shown below left counts, because the subtree shown on the left has 3 nodes and so does the one on the right and a similar condition holds for the subtrees. The tree shown on the right is not counted, because the subtree shown on the left has 3 nodes, while the one on the right has 4. O..........O...O...O |..........|....\./. O...O...O..O.....O.. .\...\./....\....|.. .O...O......O...O.. ..\./........\./... ...O..........O....
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n<2, n, add(binomial(a((n-1)/d)+d-1, d), d=divisors(n-1))) end: seq(a(n), n=1..50); # Alois P. Heinz, May 16 2013
-
Mathematica
a[1] = 1; a[n_] := a[n] = DivisorSum[n-1, Binomial[a[(n-1)/#]+#-1, #]&]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 25 2017 *)
Formula
a(1) = 1; a(n+1) = Sum_{d|n} C(a(n/d) + d-1, d).