A127529 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and jump-length equal to k (n >= 0, 0 <= k <= n-2).
1, 1, 2, 4, 1, 8, 5, 1, 16, 17, 8, 1, 32, 49, 38, 12, 1, 64, 129, 141, 77, 17, 1, 128, 321, 453, 361, 143, 23, 1, 256, 769, 1326, 1399, 834, 247, 30, 1, 512, 1793, 3640, 4776, 3869, 1765, 402, 38, 1, 1024, 4097, 9539, 14911, 15353, 9722, 3469, 623, 47, 1, 2048, 9217
Offset: 0
Examples
Triangle starts: 1; 1; 2; 4, 1; 8, 5, 1; 16, 17, 8, 1; 32, 49, 38, 12, 1; Triangle (1,1,0,1,0,1,0,1,0,1, ...) DELTA (0,0,1,0,1,0,1,0,1,0,1,0,...) begins: 1; 1, 0; 2, 0, 0; 4, 1, 0, 0; 8, 5, 1, 0, 0; 16, 17, 8, 1, 0, 0; 32, 49, 38, 12, 1, 0, 0; 64, 129, 141, 77, 17, 1, 0, 0; ... - _Philippe Deléham_, Feb 06 2012
Links
- E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202 (see Table 2).
- FindStat - Combinatorial Statistic Finder, The number of valleys not on the x-axis of a Dyck path.
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Maple
G:=1/2/(1-2*z-t+t*z)*(-2*t+1+t*z-z+sqrt(-2*t*z+1-2*z+t^2*z^2-2*t*z^2+z^2)): Gser:=simplify(series(G,z=0,13)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: 1;1;for n from 2 to 12 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form
-
Mathematica
n = 12; g[t_, z_] := 1/2/(1 - 2z - t + t*z)*(-2t + 1 + t*z - z + Sqrt[-2t*z + 1 - 2z + t^2*z^2 - 2t*z^2 + z^2]); Flatten[ CoefficientList[#, t]& /@ CoefficientList[ Simplify[Series[g[t, z], {z, 0, n}]], z]] (* Jean-François Alcover, Jul 22 2011, after g.f. *)
-
Maxima
T(n,m):=if n=0 and m=0 then 1 else if n=0 then 0 else sum(k*binomial(n,m+k)*binomial(n-k-1,m),k,0,n-m)/(n); /* Vladimir Kruchinin, Oct 29 2020 */
Formula
G.f.: G=G(t,z) satisfies (1 - t - 2*z + t*z)*G^2 - (1 - 2*t - z + t*z)*G - t = 0.
T(n,m) = Sum_{k=0..n-m} k*C(n,m+k)*C(n-k-1,m)/n, n>0, T(0,0)=1. - Vladimir Kruchinin, Oct 29 2020
Comments