A127532 Triangle read by rows: T(n,k) is the number of binary trees with n edges and jump-length equal to k (n >= 0, 0 <= k <= n-2).
1, 2, 5, 12, 2, 29, 9, 4, 70, 32, 22, 8, 169, 102, 86, 56, 16, 408, 306, 296, 244, 144, 32, 985, 883, 949, 901, 712, 368, 64, 2378, 2480, 2908, 3056, 2822, 2096, 928, 128, 5741, 6828, 8633, 9830, 10074, 8976, 6144, 2304, 256, 13860, 18514, 25032, 30482, 33792
Offset: 0
Examples
Triangle starts: 1; 2; 5; 12, 2; 29, 9, 4; 70, 32, 22, 8;
Links
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Maple
G:=(-1+2*t-2*t*z-sqrt(1-4*t*z+4*t^2*z^2-4*t*z^2))/2/(z^2-1+t-2*t*z+2*z): Gser:=simplify(series(G,z=0,17)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: 1;2;for n from 2 to 12 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form
Formula
G.f.: G = G(t,z) is given by (1 - t - 2z + 2tz - z^2)*G^2 - (1 - 2t + 2tz)*G - t = 0.
Comments