A127534 Number of jumps in all even trees with 2n edges.
0, 1, 9, 65, 442, 2940, 19380, 127281, 834900, 5476185, 35937525, 236030652, 1551652424, 10210456360, 67254204696, 443410005585, 2926078447656, 19325957314755, 127746785056275, 845069382939705, 5594334252541650
Offset: 1
Keywords
Links
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Maple
seq((n-1)*(4*n-3)*binomial(3*n,n)/3/(2*n+1)/(3*n-1),n=1..24);
-
Mathematica
Table[((n-1)(4n-3)Binomial[3n,n])/(3(2n+1)(3n-1)),{n,30}] (* Harvey P. Dale, Sep 29 2013 *)
Formula
a(n)=(n-1)(4n-3)C(3n,n)/[3(2n+1)(3n-1)].
D-finite with recurrence 8*n*(2*n+1)*a(n) -2*(136*n-69)*(n-1)*a(n-1) +5*(263*n^2-893*n+750)*a(n-2) -156*(3*n-8)*(3*n-10)*a(n-3)=0. - R. J. Mathar, Jul 22 2022
Comments