A127537 Triangle read by rows: T(n,k) (n >= 2, 1 <= k <= 2n-3) is the number of non-crossing connected graphs on n nodes on a circle, having k edges. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....
1, 0, 3, 1, 0, 0, 12, 9, 2, 0, 0, 0, 55, 66, 30, 5, 0, 0, 0, 0, 273, 455, 315, 105, 14, 0, 0, 0, 0, 0, 1428, 3060, 2856, 1428, 378, 42, 0, 0, 0, 0, 0, 0, 7752, 20349, 23940, 15960, 6300, 1386, 132, 0, 0, 0, 0, 0, 0, 0, 43263, 134596, 191268, 159390, 83490, 27324, 5148, 429
Offset: 2
Examples
Triangle starts: 1; 0, 3, 1; 0, 0, 12, 9, 2; 0, 0, 0, 55, 66, 30, 5;
Links
- C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
- C. Domb & A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
- C. Domb & A. J. Barrett, Notes on Table 2 in "Enumeration of ladder graphs", Discrete Math. 9 (1974), 55. (Annotated scanned copy)
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
Programs
-
Maple
T:=(n,k)->binomial(3*n-3,n+k)*binomial(k-1,k-n+1)/(n-1): for n from 2 to 10 do seq(T(n,k),k=1..2*n-3) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := Binomial[3n - 3, n + k] Binomial[k - 1, k - n + 1]/(n - 1); Table[T[n, k], {n, 2, 10}, {k, 1, 2n - 3}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
Formula
T(n,k) = C(3n-3,n+k)C(k-1,k-n+1)/(n-1) (n >= 2, 0 <= k <= 2n-3).
G.f.: G=G(t,z) satisfies tG^3 + tG^2 - z(1+2t)G + z^2*(1+t) = 0.
Extensions
Keyword tabl changed to tabf by Michel Marcus, Apr 09 2013
Comments