cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127538 Triangle read by rows: T(n,k) is the number of ordered trees with n edges having k odd-length branches starting at the root (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 3, 3, 7, 0, 1, 3, 22, 6, 10, 0, 1, 16, 43, 50, 9, 13, 0, 1, 37, 175, 101, 87, 12, 16, 0, 1, 134, 503, 448, 177, 133, 15, 19, 0, 1, 411, 1784, 1305, 862, 271, 188, 18, 22, 0, 1, 1411, 5887, 4848, 2524, 1444, 383, 252, 21, 25, 0, 1, 4747, 20604
Offset: 0

Views

Author

Emeric Deutsch, Mar 01 2007

Keywords

Comments

Row sums are the Catalan numbers (A000108). T(n,0)=A127539(n). Sum(k*T(n,k),k=0..n)=A127540(n).

Examples

			T(2,2)=1 because we have the tree /\.
Triangle starts:
1;
0,1;
1,0,1;
0,4,0,1;
3,3,7,0,1;
3,22,6,10,0,1;
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(1+z)/(1+z-z^2*C-t*z*C): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

G.f.=(1+z)/(1+z-z^2*C-tzC), where C =[1-sqrt(1-4z)]/(2z) is the Catalan function.

A127541 Triangle read by rows: T(n,k) is the number of ordered trees with n edges having k even-length branches starting at the root (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 8, 5, 1, 24, 15, 3, 75, 46, 10, 1, 243, 148, 34, 4, 808, 489, 116, 16, 1, 2742, 1652, 402, 61, 5, 9458, 5678, 1408, 228, 23, 1, 33062, 19792, 4982, 847, 97, 6, 116868, 69798, 17783, 3138, 393, 31, 1, 417022, 248577, 63967, 11627, 1557, 143, 7
Offset: 0

Views

Author

Emeric Deutsch, Mar 01 2007

Keywords

Comments

Row n has 1+floor(n/2) terms. Row sums are the Catalan numbers (A000108). T(n,0)=A000958(n-1). Sum(k*T(n,k),k=0..floor(n/2))=A127540(n-1).

Examples

			T(2,0)=1 because we have the tree /\.
Triangle starts:
1;
1;
1,1;
3,2;
8,5,1;
24,15,3;
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(1+z)/(1+z-z*C-t*z^2*C): Gser:=simplify(series(G,z=0,17)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form

Formula

G.f.=(1+z)/(1+z-z*C-tz^2*C), where C =[1-sqrt(1-4z)]/(2z) is the Catalan function.

A168377 Riordan array (1/(1 + x), x*c(x)), where c(x) is the o.g.f. of Catalan numbers A000108.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 2, 1, 1, 1, 3, 4, 2, 1, -1, 11, 10, 7, 3, 1, 1, 31, 32, 21, 11, 4, 1, -1, 101, 100, 69, 37, 16, 5, 1, 1, 328, 329, 228, 128, 59, 22, 6, 1, -1, 1102, 1101, 773, 444, 216, 88, 29, 7, 1, 1, 3760, 3761, 2659, 1558, 785, 341, 125, 37, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 24 2009

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
   1;
  -1,   1;
   1,   0,   1;
  -1,   2,   1,  1;
   1,   3,   4,  2,  1;
  -1,  11,  10,  7,  3,  1;
   1,  31,  32, 21, 11,  4, 1;
  -1, 101, 100, 69, 37, 16, 5, 1;
  ...
From _Philippe Deléham_, Sep 14 2014: (Start)
Production matrix begins:
  -1, 1
   0, 1, 1
   0, 1, 1, 1
   0, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1, 1, 1
   ... (End)
		

Crossrefs

Programs

  • PARI
    A000108(n) = binomial(2*n, n)/(n+1);
    A032357(n) = sum(k=0, n, (-1)^(n-k)*A000108(k));
    T(n, k) = if ((k==0), (-1)^n, if ((n<0) || (k<0), 0, if (k==1, A032357(n-1), if (n > k-1, T(n, k-1) - T(n-1, k-2), 0))));
    for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Petros Hadjicostas, Aug 08 2020

Formula

T(n,0) = (-1)^n and T(n,n) = 1.
Sum_{0 <= k <= n} T(n,k) = A032357(n).
From Petros Hadjicostas, Aug 08 2020: (Start)
T(n,k) = T(n,k-1) - T(n-1,k-2) for 2 <= k <= n with initial conditions T(n,0) = (-1)^n (n >= 0) and T(n,1) = A032357(n-1) (n >= 1).
T(n,2) = A033297(n).
T(n,n-1) = n - 2 for n >= 1.
|T(n,k)| = |A096470(n,n-k)| for 0 <= k <= n.
Bivariate o.g.f.: 1/((1 + x)*(1 - x*y*c(x))), where c(x) is the o.g.f. of A000108.
Bivariate o.g.f.: (1 - y + x*y*c(x))/((1 + x)*(1 - y + x*y^2)).
Bivariate o.g.f. of |T(n,k)|: (o.g.f. of T(n,k)) + 2*x/(1 - x^2). (End)
Showing 1-3 of 3 results.