A127543 Triangle T(n,k), 0<=k<=n, read by rows given by :[ -1,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -2, 0, 2, -1, 1, -6, 2, 1, 3, -1, 1, -18, 5, 7, 2, 4, -1, 1, -57, 17, 19, 13, 3, 5, -1, 1, -186, 56, 64, 36, 20, 4, 6, -1, 1, -622, 190, 212, 124, 56, 28, 5, 7, -1, 1, -2120, 654, 722, 416, 198, 79, 37, 6, 8, -1, 1, -7338, 2282, 2494, 1434, 673, 287, 105, 47, 7, 9, -1, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 0, -1, 1; -1, 1, -1, 1; -2, 0, 2, -1, 1; -6, 2, 1, 3, -1, 1; -18, 5, 7, 2, 4, -1, 1; -57, 17, 19, 13, 3, 5, -1, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
A065600[n_, k_]:= If[k==n, 1, Sum[j*Binomial[k+j, j]*Binomial[2*(n-k-j), n-k]/(n-k-j), {j,0, Floor[(n-k)/2]}]]; A127543[n_, k_]:= A065600[n-1,k-1] - A065600[n-1,k]; Table[A127543[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 17 2021 *)
-
Sage
def A065600(n,k): return 1 if (k==n) else sum( j*binomial(k+j, j)*binomial(2*(n-k-j), n-k)/(n-k-j) for j in (0..(n-k)//2) ) def A127543(n,k): return A065600(n-1, k-1) - A065600(n-1, k) flatten([[A127543(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 17 2021
Comments