A127582 a(n) = the smallest prime number of the form k*2^n - 1, for k >= 1.
2, 3, 3, 7, 31, 31, 127, 127, 1279, 3583, 5119, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647
Offset: 0
Keywords
Examples
a(0)=2 because 2 = 3*2^0 - 1 is prime. a(1)=3 because 3 = 2*2^1 - 1 is prime. a(2)=3 because 3 = 1*2^2 - 1 is prime. a(3)=7 because 7 = 1*2^3 - 1 is prime. a(4)=31 because 31 = 2*2^4 - 1 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 0..3310
Programs
-
Maple
p:= 2: A[0]:= 2: for n from 1 to 100 do if p+1 mod 2^n = 0 then A[n]:= p else p:=p+2^(n-1); while not isprime(p) do p:= p+2^n od: A[n]:= p; fi od: seq(A[i],i=0..100); # Robert Israel, Jan 13 2017
-
Mathematica
a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 0, 50}]; a (* Artur Jasinski, Jan 19 2007 *)
Formula
a(n) << 37^n by Xylouris's improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013
Extensions
Edited by Don Reble, Jun 11 2007
Further edited by N. J. A. Sloane, Jul 03 2008