cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340476 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2021

Keywords

Examples

			Square array begins:
  1,  1,     1,       1,         1, ...
  1,  4,    19,      91,       436, ...
  1, 11,   176,    2911,     48301, ...
  1, 29,  1471,   79808,   4375897, ...
  1, 76, 11989, 2091817, 372713728, ...
		

Crossrefs

Column k=0..1 give A000012, A002878.
Main diagonal gives A127606.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
    
  • PARI
    {T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}

Formula

T(n,k) = 2^k * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*k}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).

A340563 a(n) = sqrt( Product_{1<=j, k<=n-1} (4*sin(j*Pi/n)^2 + 4*cos(k*Pi/n)^2) ).

Original entry on oeis.org

1, 1, 2, 16, 384, 30976, 7741440, 6369316864, 16435095011328, 138915523039657984, 3696387867279360000000, 321533678904455375050768384, 88192375153215003517412966400000, 78996127242669742603293261855977373696, 223311937686075869460797609709638544686841856
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2021

Keywords

Crossrefs

Main diagonal of A340561.

Programs

  • Mathematica
    Table[Sqrt[Product[Product[(4*Sin[j*Pi/n]^2 + 4*Cos[k*Pi/n]^2), {j, 1, n - 1}], {k, 1, n - 1}]], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(sqrt(prod(j=1, n-1, prod(k=1, n-1, 4*sin(j*Pi/n)^2+4*cos(k*Pi/n)^2))))}

Formula

a(n) ~ c * (sqrt(2) - 1)^n * exp(2*G*n^2/Pi), where c = sqrt(Pi) / Gamma(3/4)^2 if n is even and c = 2^(1/4) if n is odd, G is Catalan's constant A006752. - Vaclav Kotesovec, Mar 18 2023
Showing 1-2 of 2 results.