A127618
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 4 with the steps (1,0), (0, 1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 117, 590, 3018, 15378, 78440, 399992, 2039852, 10402480, 53049048, 270531368, 1379614800, 7035549312, 35878823312, 182969359520, 933079279328, 4758375627808, 24266039468160, 123748253080832, 631072497876672
Offset: 0
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
-
Join[{1, 1}, LinearRecurrence[{4, 6, -2}, {5, 22, 117}, 21]] (* Jean-François Alcover, Dec 10 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 4];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 03 2019 *)
A127619
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 5 with the steps (1,0), (0, 1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 117, 654, 3674, 20763, 117349, 663529, 3751874, 21215245, 119963514, 678345474, 3835772387, 21689760681, 122646936325, 693519457822, 3921575652821, 22174944672838, 125390459051898, 709032985366923
Offset: 0
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
-
LinearRecurrence[{5, 6, -11, -12, 4}, {1, 1, 5, 22, 117}, 22] (* Jean-François Alcover, Dec 10 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n - k <= 5];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 03 2019 *)
A127620
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 6 with the steps (1,0), (0, 1), (2,0) and (0,2).
Original entry on oeis.org
1, 1, 5, 22, 117, 654, 3843, 22882, 137443, 827998, 4995443, 30155494, 182083275, 1099560942, 6640309323, 40101959542, 242184540139, 1462610652718, 8833070227499, 53345145429670, 322164911643723, 1945636121710110
Offset: 0
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
-
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 6];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-1, k]* T[n-1, k] + b[n-2, k]*T[n-2, k] + b[n, k-1]*T[n, k-1] + b[n, k-2]*T[n, k-2]; T[, ] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 21}]
(* or: *)
LinearRecurrence[{6, 5, -24, -28, -6, 8}, {1, 1, 5, 22, 117, 654}, 22] (* Jean-François Alcover, Apr 02 2019 *)
Showing 1-3 of 3 results.