A127618 Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 4 with the steps (1,0), (0, 1), (2,0) and (0,2).
1, 1, 5, 22, 117, 590, 3018, 15378, 78440, 399992, 2039852, 10402480, 53049048, 270531368, 1379614800, 7035549312, 35878823312, 182969359520, 933079279328, 4758375627808, 24266039468160, 123748253080832, 631072497876672
Offset: 0
Examples
a(2)=5 because we can reach (2,2) in the following ways: (0,0),(1,0),(1,1),(2,1),(2,2) (0,0),(2,0),(2,2) (0,0),(1,0),(2,0),(2,2) (0,0),(2,0),(2,1),(2,2) (0,0),(1,0),(2,0),(2,1),(2,2)
Links
- Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Points, arXiv:math/0610734 [math.CO], 2006-2007.
- Index entries for linear recurrences with constant coefficients, signature (4,6,-2).
Programs
-
Mathematica
Join[{1, 1}, LinearRecurrence[{4, 6, -2}, {5, 22, 117}, 21]] (* Jean-François Alcover, Dec 10 2018 *) b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 4]; T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0; a[n_] := T[n, n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 03 2019 *)
Formula
G.f.: (1-3x-5x^2-2x^3+x^4)/(1-4x-6x^2+2x^3).