A127620 Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 6 with the steps (1,0), (0, 1), (2,0) and (0,2).
1, 1, 5, 22, 117, 654, 3843, 22882, 137443, 827998, 4995443, 30155494, 182083275, 1099560942, 6640309323, 40101959542, 242184540139, 1462610652718, 8833070227499, 53345145429670, 322164911643723, 1945636121710110
Offset: 0
Examples
a(2)=5 because we can reach (2,2) in the following ways: (0,0),(1,0),(1,1),(2,1),(2,2) (0,0),(2,0),(2,2) (0,0),(1,0),(2,0),(2,2) (0,0),(2,0),(2,1),(2,2) (0,0),(1,0),(2,0),(2,1),(2,2)
Links
- Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Points, arXiv:math/0610734 [math.CO], 2006-2007.
- Index entries for linear recurrences with constant coefficients, signature (6, 5, -24, -28, -6, 8).
Programs
-
Mathematica
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 6]; T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-1, k]* T[n-1, k] + b[n-2, k]*T[n-2, k] + b[n, k-1]*T[n, k-1] + b[n, k-2]*T[n, k-2]; T[, ] = 0; a[n_] := T[n, n]; Table[a[n], {n, 0, 21}] (* or: *) LinearRecurrence[{6, 5, -24, -28, -6, 8}, {1, 1, 5, 22, 117, 654}, 22] (* Jean-François Alcover, Apr 02 2019 *)
Formula
G.f.: (1 - 5x - 6x^2 + 11x^3 + 12x^4 - 4x^5)/(1 - 6x - 5x^2 + 24x^3 + 28x^4 + 6x^5 - 8x^6). [corrected by Jean-François Alcover, Apr 02 2019]