cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127628 G.f. 1/(1-6*x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 6, 42, 300, 2154, 15492, 111492, 802584, 5778090, 41600532, 299517996, 2156509416, 15526797252, 111792690600, 804906480840, 5795323452720, 41726317225770, 300429441596340, 2163091823919900, 15574260559056840, 112134673904493420, 807369644235408120
Offset: 0

Views

Author

Paul Barry, Jan 20 2007

Keywords

Comments

Image of 6^n under the Catalan transform g(x)->g(xc(x)). The Hankel transform of this sequence and of the aerated version with g.f. 1/(1-6*x^2*c(x^2)) is 6^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(72 + 144*n)*a(n) + (-82 - 56*n)*a(n + 1) + (5*n + 10)*a(n + 2), a(0) = 1, a(1) = 6},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Aug 28 2020
  • Mathematica
    RecurrenceTable[{(-56*n - 82)*a[n + 1] + (5*n +  10)*a[n + 2] + (144*n + 72)*a[n] == 0, a[0] == 1, a[1] == 6}, a, {n, 0, 50}] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
  • PARI
    my(x='x+O('x^25)); Vec(1/(1-6*x*(1-sqrt(1-4*x))/(2*x))) \\ Michel Marcus, Sep 15 2022

Formula

a(n) = 1 if n=0, Sum_{k=1..n} C(2*n-k-1,n-k)*k*6^k/n otherwise;
a(n) = Sum_{k=0..n} C(2*n,n-k)*(2*k+1)*5^k/(n+k+1).
a(n) = Sum_{k=0..n} A106566(n,k)*6^k. - Philippe Deléham, Feb 04 2007
a(n) = Sum_{k=0..n} A039599(n,k)*5^k. - Philippe Deléham, Sep 08 2007
a(n) = (36*a(n-1) - 6*A000108(n-1))/5 for n >= 1, a(0) = 1. - Philippe Deléham, Nov 27 2007
Conjecture: 5*n*a(n) + 2*(15-28*n)*a(n-1) + 72*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
G.f.: (2+3*sqrt(1-4*x))/(5-36*x). Mathar's conjecture verified using the differential equation (144*x^2-56*x+5)*y'+(72*x-26)*y = 4 satisfied by the g.f. - Robert Israel, Aug 28 2020