A127633 Pure numbers in the Collatz (3x+1) iteration that are not multiples of 3.
1, 7, 19, 25, 37, 43, 55, 73, 79, 97, 109, 115, 127, 133, 145, 151, 163, 169, 181, 187, 199, 217, 223, 235, 241, 259, 271, 277, 289, 295, 307, 313, 331, 343, 349, 361, 367, 379, 385, 397, 403, 421, 439, 451, 457, 469, 475, 487, 493, 505, 511, 523, 529, 541
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Douglas J. Shaw, The Pure Numbers Generated by the Collatz Sequence, The Fibonacci Quarterly, Vol. 44, Number 3, August 2006, p. 194.
Crossrefs
Cf. A061641.
Formula
A positive integer n is pure if its entire tree of preimages under the Collatz function C is greater than or equal to it; otherwise n is impure [Shaw, p. 195]. For n a positive integer, the function C is defined by C(n) = {3n+1, n odd; n/2, n even}.
Extensions
Edited by N. J. A. Sloane and T. D. Noe, Oct 16 2007
Comments