A127649 A127648 * A054523 as infinite lower triangular matrices.
1, 2, 2, 6, 0, 3, 8, 4, 0, 4, 20, 0, 0, 0, 5, 12, 12, 6, 0, 0, 6, 42, 0, 0, 0, 0, 0, 7, 32, 16, 0, 8, 0, 0, 0, 8, 54, 0, 18, 0, 0, 0, 0, 0, 9, 40, 40, 0, 0, 10, 0, 0, 0, 0, 10, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 48, 24, 24, 24, 0, 12, 0, 0, 0, 0, 0, 12, 156, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 84
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 2; 6, 0, 3; 8, 4, 0, 4; 20, 0, 0, 0, 5; 12, 12, 6, 0, 0, 6; 42, 0, 0, 0, 0, 0, 7; ...
Programs
-
Maple
A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi ; end: A127649 := proc(n,k) A054523(n,k)*n ; end: for n from 1 to 20 do for k from 1 to n do printf("%d,",A127649(n,k)) ; od: od: # R. J. Mathar, Nov 01 2007
Formula
T(n,k)=n*A054523(n,k). - R. J. Mathar, Nov 01 2007
T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x - y. - Mats Granvik, Oct 08 2023
Extensions
More terms from R. J. Mathar, Nov 01 2007
Comments