A366362
Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
Original entry on oeis.org
1, 0, 4, 5, 0, 4, 0, 8, 0, 8, 21, 0, 0, 0, 4, 0, 20, 0, 0, 0, 16, 40, 0, 0, 0, 0, 0, 9, 0, 32, 0, 16, 0, 0, 0, 16, 45, 0, 24, 0, 0, 0, 0, 0, 12, 0, 84, 0, 0, 0, 0, 0, 0, 0, 16, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32
Offset: 1
{
{1}, = 1^2
{0, 4}, = 2^2
{5, 0, 4}, = 3^2
{0, 8, 0, 8}, = 4^2
{21, 0, 0, 0, 4}, = 5^2
{0, 20, 0, 0, 0, 16}, = 6^2
{40, 0, 0, 0, 0, 0, 9}, = 7^2
{0, 32, 0, 16, 0, 0, 0, 16}, = 8^2
{45, 0, 24, 0, 0, 0, 0, 0, 12}, = 9^2
{0, 84, 0, 0, 0, 0, 0, 0, 0, 16}, = 10^2
{111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 11^2
{0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32} = 12^2
}
-
f = x^3 - x^2 - y^2 - y; nn = 12; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]
A366561
Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^2 - y^2.
Original entry on oeis.org
1, 2, 2, 4, 0, 5, 8, 0, 0, 8, 16, 0, 0, 0, 9, 8, 8, 10, 0, 0, 10, 36, 0, 0, 0, 0, 0, 13, 32, 0, 0, 8, 0, 0, 0, 24, 36, 0, 24, 0, 0, 0, 0, 0, 21, 32, 32, 0, 0, 18, 0, 0, 0, 0, 18, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 32, 0, 40, 32, 0, 0, 0, 0, 0, 0, 0, 40
Offset: 1
{
{1}, = 1^2
{2, 2}, = 2^2
{4, 0, 5}, = 3^2
{8, 0, 0, 8}, = 4^2
{16, 0, 0, 0, 9}, = 5^2
{8, 8, 10, 0, 0, 10}, = 6^2
{36, 0, 0, 0, 0, 0, 13}, = 7^2
{32, 0, 0, 8, 0, 0, 0, 24}, = 8^2
{36, 0, 24, 0, 0, 0, 0, 0, 21}, = 9^2
{32, 32, 0, 0, 18, 0, 0, 0, 0, 18}, = 10^2
{100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21}, = 11^2
{32, 0, 40, 32, 0, 0, 0, 0, 0, 0, 0, 40} = 12^2
}
-
nn = 12; f = x^2 - y^2; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]
-
T(n,k) = sum(x=1, n, sum(y=1, n, gcd(x^2 - y^2, n) == k)); \\ Michel Marcus, Oct 14 2023
A366444
Triangle read by rows: T(n,k) = phi(n/k)*A023900(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, -1, 2, 0, -2, 2, -1, 0, -1, 4, 0, 0, 0, -4, 2, -2, -2, 0, 0, 2, 6, 0, 0, 0, 0, 0, -6, 4, -2, 0, -1, 0, 0, 0, -1, 6, 0, -4, 0, 0, 0, 0, 0, -2, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1
{
{1}, = 1
{1, -1}, = 0
{2, 0, -2}, = 0
{2, -1, 0, -1}, = 0
{4, 0, 0, 0, -4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{6, 0, 0, 0, 0, 0, -6}, = 0
{4, -2, 0, -1, 0, 0, 0, -1}, = 0
{6, 0, -4, 0, 0, 0, 0, 0, -2}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}, = 0
{4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2} = 0
}
-
nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, EulerPhi[n/k]*g[k], 0], {k, 1, n}], {n, 1, nn}]]
A366445
Triangle read by rows: T(n,k) = A023900(n/k)*phi(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, -1, 1, -2, 0, 2, -1, -1, 0, 2, -4, 0, 0, 0, 4, 2, -2, -2, 0, 0, 2, -6, 0, 0, 0, 0, 0, 6, -1, -1, 0, -2, 0, 0, 0, 4, -2, 0, -4, 0, 0, 0, 0, 0, 6, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4
Offset: 1
{
{1}, = 1
{-1, 1}, = 0
{-2, 0, 2}, = 0
{-1, -1, 0, 2}, = 0
{-4, 0, 0, 0, 4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{-6, 0, 0, 0, 0, 0, 6}, = 0
{-1, -1, 0, -2, 0, 0, 0, 4}, = 0
{-2, 0, -4, 0, 0, 0, 0, 0, 6}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 0
{2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4} = 0
}
-
nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, g[n/k]*EulerPhi[k], 0], {k, 1, n}], {n, 1, nn}]]
Showing 1-4 of 4 results.
Comments