cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127657 Integers whose exponential aliquot sequences end in an e-perfect number.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1352, 1476, 1548, 1692, 1728, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2880, 2916, 2988, 3000, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3750, 3852, 3924, 4068, 4140
Offset: 1

Views

Author

Ant King, Jan 25 2007

Keywords

Examples

			a(5) = 468 because the fifth integer whose exponential aliquot sequences ends in an e-perfect number is 468.
		

Crossrefs

Programs

  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialPerfectNumberQ[0]=False;ExponentialPerfectNumberQ[k_Integer] :=If[se[k]==k,True,False];Select[Range[5000],ExponentialPerfectNumberQ[Last[eTrajectory[ # ]]] &]
    f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] == v[[-2]] > 0]; Select[Range[4000], q] (* Amiram Eldar, Mar 11 2023 *)