cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127661 Lengths of the infinitary aliquot sequences.

Original entry on oeis.org

2, 3, 3, 3, 3, 1, 3, 4, 3, 5, 3, 5, 3, 6, 4, 3, 3, 6, 3, 6, 4, 7, 3, 8, 3, 4, 4, 6, 3, 6, 3, 4, 5, 7, 4, 7, 3, 8, 4, 8, 3, 5, 3, 4, 5, 5, 3, 7, 3, 7, 5, 7, 3, 4, 4, 6, 4, 5, 3, 1, 3, 8, 4, 5, 4, 3, 3, 8, 5, 10, 3, 3, 3, 9, 4, 9, 4, 2, 3, 8, 3, 5, 3, 10, 4, 6, 6, 8, 3, 1, 5, 7, 5, 8, 4, 9, 3, 8, 5, 7
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

An infinitary aliquot sequence is defined by the map x->A049417(x)-x. The map usually terminates with a zero, but may enter cycles (if n in A127662 for example).
The length of an infinitary aliquot sequence is defined to be the length of its transient part + the length of its terminal cycle.
The value of a(840) starting the infinitary aliquot sequence 840 -> 2040 -> 4440 -> 9240 -> 25320,... is >1500. - R. J. Mathar, Oct 05 2017

Examples

			a(4)=3 because the infinitary aliquot sequence generated by 4 is 4 -> 1 -> 0 and it has length 3.
a(6) = 1 because 6 -> 6 -> 6 ->... enters a cycle after 1 term.
a(8) = 4 because 8 -> 7 -> 1 -> 0 terminates after 4 terms.
a(30) = 6 because 30 ->42 -> 54 -> 66 -> 78 -> 90 -> 90 -> 90 -> ...enters a cycle after 6 terms.
a(126)=2 because 126 -> 114 -> 126 enters a cycle after 2 terms.
		

Crossrefs

Programs

  • Maple
    # Uses code snippets of A049417
    A127661 := proc(n)
        local trac,x;
        x := n ;
        trac := [x] ;
        while true do
            x := A049417(x)-trac[-1] ;
            if x = 0 then
                return 1+nops(trac) ;
            elif x in trac then
                return nops(trac) ;
            end if;
            trac := [op(trac),x] ;
        end do:
    end proc:
    seq(A127661(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ]; properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[iTrajectory[ # ]] &/@ Range[100]
    (* Second program: *)
    A049417[n_] := If[n == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
    A127661[n_] := Module[{trac, x}, x = n; trac = {x}; While[True, x = A049417[x] - trac[[-1]]; If[x == 0, Return[1 + Length[trac]], If[MemberQ[trac, x], Return[Length[trac]]]]; trac = Append[trac, x]]];
    Table[A127661[n], {n, 1, 100}] (* Jean-François Alcover, Aug 28 2023, after R. J. Mathar *)