A127664 Infinitary amicable numbers.
114, 126, 594, 846, 1140, 1260, 4320, 5940, 7920, 8460, 8640, 10744, 10856, 11760, 12285, 13500, 14595, 17700, 25728, 35712, 43632, 44772, 45888, 49308, 60858, 62100, 62700, 67095, 67158, 71145, 73962, 74784, 79296, 79650, 79750, 83142, 83904, 86400, 88730
Offset: 1
Keywords
Examples
a(5)=1140 because 1140 is the fifth infinitary amicable number.
Links
- Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
- J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
Crossrefs
Programs
-
Mathematica
ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum,k,2]==k && !properinfinitarydivisorsum[k]==k,True,False];Select[Range[50000],InfinitaryAmicableNumberQ[ # ] &] fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k != n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Mar 16 2019 *)
Extensions
More terms from Amiram Eldar, Mar 16 2019