A127668 Concatenated indices of primes in prime factorization of n.
1, 2, 11, 3, 21, 4, 111, 22, 31, 5, 211, 6, 41, 32, 1111, 7, 221, 8, 311, 42, 51, 9, 2111, 33, 61, 222, 411, 10, 321, 11, 11111, 52, 71, 43, 2211, 12, 81, 62, 3111, 13, 421, 14, 511, 322, 91, 15, 21111, 44, 331, 72, 611, 16, 2221, 53, 4111, 82, 101, 17, 3211, 18, 111
Offset: 2
Examples
111=a(2*2*2)=a(31*2)=a(607). 111 has k=3 digits, hence pa(3)=3 different numbers are mapped to it. a(5)=3 because 5=p(3). a(4)=11 because 4=2*2=p(1)*p(1). Also a(31)=11 because p(11)=31.
Links
- W. Lang: Unique representation as lists.
Crossrefs
For numbers with no prime divisor > 23, the sum of digits gives A056239(n), n>=2.
For numbers with no prime divisor > 23, the length of the digits gives A001222(n), n>=2, (number of prime divisors of n).
The number of numbers mapped to a(n) gives A127669.
Cf. A054841(n), n>=2: exponents in prime decomposition of n.
See A112798 for another version of this data.
Formula
If n=p_1^(n_1) p_2^(n_2)...p_k^(n_k), with n_j>=0, then a(n) = n_k times k followed by n_{k-1} times (k-1)... followed by n_1 times 1.
Extensions
Edited by Franklin T. Adams-Watters, May 21 2014
Comments