cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127669 Number of numbers mapped to A127668(n) with the map described there.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 3, 2, 7, 2, 2, 2, 5, 1, 2, 2, 5, 1, 3, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 3, 3, 11, 2, 3, 1, 3, 2, 3, 1, 7, 2, 2, 3, 3, 2, 3, 2, 7, 5, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 3, 2, 2, 2, 11, 1, 3, 3, 5
Offset: 2

Views

Author

Wolfdieter Lang Jan 23 2007

Keywords

Comments

This is not A008481(n), n>=2, which starts similarly, but differs, beginning with n=24.

Examples

			a(4)=2 because two numbers are mapped to 11= A127668(4), namely n=p(1)*p(1)=4 and n=p(11)=31. p(n)=A000041(n) (partition numbers).
a(24)=5 but A008481(24)=4.
The five numbers mapped to A127668(24)= 2111 are: 18433, 2594, 2263, 292, 24.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local S;
       nops(g(sprintf("%d",n)))
    end proc:
    g:= proc(s) option remember;
        local S,m,k1;
        if s[1] = "0" then return {} fi;
        S:= {[parse(s)]};
        for m from 1 to length(s)-1 do
          k1:= parse(s[1..m]);
          S:= S union map(t -> [k1,op(t)], select(r -> r[1] <= k1, procname(s[m+1..-1])));
        od;
        S;
    end proc:
    h:= proc(n) local F;
      F:= map(t -> numtheory:-pi(t[1])$t[2], sort(ifactors(n)[2],(a,b) -> a[1] > b[1]));
      parse(cat(op(F)))
    end proc:
    seq(f(h(i)),i=2..100); # Robert Israel, Dec 08 2024

Formula

a(n) <= pa(Length( A127668(n))), n>=2. Length gives the number of digits and pa(k):=A000041(k) (partition numbers). (It was originally claimed that this is equality, but that is not correct. - Franklin T. Adams-Watters, May 21 2014)

Extensions

Edited by Franklin T. Adams-Watters, May 21 2014
Corrected by Robert Israel, Dec 08 2024

A056239 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} k*c_k.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 8, 6, 13, 7, 14, 7, 7, 10, 15, 6, 8, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 7, 18, 12, 8, 6, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 7, 8, 14, 23, 8, 10, 15, 12, 8, 24, 8, 10
Offset: 1

Views

Author

Leroy Quet, Aug 19 2000

Keywords

Comments

A pseudo-logarithmic function in the sense that a(b*c) = a(b)+a(c) and so a(b^c) = c*a(b) and f(n) = k^a(n) is a multiplicative function. [Cf. A248692 for example.] Essentially a function from the positive integers onto the partitions of the nonnegative integers (1->0, 2->1, 3->2, 4->1+1, 5->3, 6->1+2, etc.) so each value a(n) appears A000041(a(n)) times, first with the a(n)-th prime and last with the a(n)-th power of 2. Produces triangular numbers from primorials. - Henry Bottomley, Nov 22 2001
Michael Nyvang writes (May 08 2006) that the Danish composer Karl Aage Rasmussen discovered this sequence in the 1990's: it has excellent musical properties.
All A000041(a(n)) different n's with the same value a(n) are listed in row a(n) of triangle A215366. - Alois P. Heinz, Aug 09 2012
a(n) is the sum of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(33) = 7 because the partition with Heinz number 33 = 3 * 11 is [2,5]. - Emeric Deutsch, May 19 2015

Examples

			a(12) = 1*2 + 2*1 = 4, since 12 = 2^2 *3^1 = (p_1)^2 *(p_2)^1.
		

Crossrefs

Programs

  • Haskell
    a056239 n = sum $ zipWith (*) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    # To get 10000 terms. First make prime table: M:=10000; pl:=array(1..M); for i from 1 to M do pl[i]:=0; od: for i from 1 to M do if ithprime(i) > M then break; fi; pl[ithprime(i)]:=i; od:
    # Decode Maple's amazing syntax for factoring integers: g:=proc(n) local e,p,t1,t2,t3,i,j,k; global pl; t1:=ifactor(n); t2:=nops(t1); if t2 = 2 and whattype(t1) <> `*` then p:=op(1,op(1,t1)); e:=op(2,t1); t3:=pl[p]*e; else
    t3:=0; for i from 1 to t2 do j:=op(i,t1); if nops(j) = 1 then e:=1; p:=op(1,j); else e:=op(2,j); p:=op(1,op(1,j)); fi; t3:=t3+pl[p]*e; od: fi; t3; end; # N. J. A. Sloane, May 10 2006
    A056239 := proc(n) add( numtheory[pi](op(1,p))*op(2,p), p = ifactors(n)[2]) ; end proc: # R. J. Mathar, Apr 20 2010
    # alternative:
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: add(B(n)[i], i = 1 .. nops(B(n))) end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 19 2015
  • Mathematica
    a[1] = 0; a[2] = 1; a[p_?PrimeQ] := a[p] = PrimePi[p];
    a[n_] := a[n] = Total[#[[2]]*a[#[[1]]] & /@ FactorInteger[n]]; a /@ Range[91] (* Jean-François Alcover, May 19 2011 *)
    Table[Total[FactorInteger[n] /. {p_, c_} /; p > 0 :> PrimePi[p] c], {n, 91}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); \\ Antti Karttunen, Oct 26 2014, edited Jan 13 2020
    
  • Python
    from sympy import primepi, factorint
    def A056239(n): return sum(primepi(p)*e for p, e in factorint(n).items()) # Chai Wah Wu, Jan 01 2023
  • Scheme
    (require 'factor) ;; Uses the function factor available in Aubrey Jaffer's SLIB Scheme library.
    (define (A056239 n) (apply + (map A049084 (factor n))))
    ;; Antti Karttunen, Oct 26 2014
    

Formula

Totally additive with a(p) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{k=1..A001221(n)} A049084(A027748(k))*A124010(k). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Oct 11 2014: (Start)
a(n) = n - A178503(n).
a(n) = A161511(A156552(n)).
a(n) = A227183(A243354(n)).
For all n >= 0:
a(A002110(n)) = A000217(n). [Cf. Henry Bottomley's comment above.]
a(A005940(n+1)) = A161511(n).
a(A243353(n)) = A227183(n).
Also, for all n >= 1:
a(A241909(n)) = A243503(n).
a(A122111(n)) = a(n).
a(A242424(n)) = a(n).
A248692(n) = 2^a(n). (End)
a(n) < A329605(n), a(n) = A001222(A108951(n)), a(A329902(n)) = A112778(n). - Antti Karttunen, Jan 14 2020

A329025 If n = Product (p_j^k_j) then a(n) = concatenation (pi(p_j)), where pi = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 12, 4, 1, 2, 13, 5, 12, 6, 14, 23, 1, 7, 12, 8, 13, 24, 15, 9, 12, 3, 16, 2, 14, 10, 123, 11, 1, 25, 17, 34, 12, 12, 18, 26, 13, 13, 124, 14, 15, 23, 19, 15, 12, 4, 13, 27, 16, 16, 12, 35, 14, 28, 110, 17, 123, 18, 111, 24, 1, 36, 125, 19, 17, 29, 134
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2019

Keywords

Comments

Concatenate of indices of distinct prime factors of n, in increasing order.

Examples

			a(60) = a(2^2 * 3 * 5) = a(prime(1)^2 * prime(2) * prime(3)) = 123.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[Flatten@IntegerDigits@(PrimePi[#[[1]]] & /@ FactorInteger[n])]; Table[a[n], {n, 1, 70}]

Formula

a(prime(n)^k) = n for k > 0.
Showing 1-3 of 3 results.