cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127674 Coefficient table for Chebyshev polynomials T(2*n,x) (increasing even powers x, without zeros).

Original entry on oeis.org

1, -1, 2, 1, -8, 8, -1, 18, -48, 32, 1, -32, 160, -256, 128, -1, 50, -400, 1120, -1280, 512, 1, -72, 840, -3584, 6912, -6144, 2048, -1, 98, -1568, 9408, -26880, 39424, -28672, 8192, 1, -128, 2688, -21504, 84480, -180224, 212992, -131072, 32768, -1, 162, -4320, 44352, -228096, 658944, -1118208
Offset: 0

Views

Author

Wolfdieter Lang Mar 07 2007

Keywords

Comments

Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of (the signless version of) this array are the f-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A086645 for the corresponding array of h-vectors for these type C_n polytopes. See A063007 for the array of f-vectors for type A_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes. - Peter Bala, Oct 23 2008

Examples

			[1];
[-1,2];
[1,-8,8];
[-1,18,-48,32];
[1,-32,160,-256,128];
...
See a link for the row polynomials.
The T-polynomial for row n=3, [-1,18,-48,32], is T(2*3,x) =  -1*x^0 + 18*x^2 - 48*x^4 + 32*x^6.
		

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. p. 37, eq.(1.96) and p. 4. eq.(1.10).

Crossrefs

Cf. A075733 (different signs and offset). A084930 (coefficients of odd-indexed T-polynomials).
Cf. A053120 (coefficients of T-polynomials, with interspersed zeros).

Formula

a(n,m) = 0 if n < m, a(0,0) = 1; otherwise a(n,m) = ((-1)^(n-m))*(2^(2*m-1))*binomial(n+m,2*m)*(2*n)/(n+m).
O.g.f.: (1 + z*(1 - 2*x))/((1 + z)^2 - 4*x*z) = 1 + (-1 + 2*x)*z + (1 - 8*x + 8*x^2)*z^2 + ... . [Peter Bala, Oct 23 2008] For the t-polynomials actually with x -> x^2. - Wolfdieter Lang, Aug 02 2014
Denoting the row polynomials by R(n,x) we have exp( Sum_{n >= 1} R(n,x)*z^n/n ) = 1/sqrt( (1 + z)^2 - 4*x*z ) = 1 + (-1 + 2*x)*z + (1 - 6*x + 6*x^2)*z^2 + ..., the o.g.f. for a signed version of A063007. - Peter Bala, Sep 02 2015
The n-th row polynomial equals T(n, 2*x - 1). - Peter Bala, Jul 09 2023