cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127693 Expansion of psi(x^2) + x * psi(x^10) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 19 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^6 + x^11 + x^12 + x^20 + x^30 + x^31 + x^42 + x^56 + x^61 + ...
G.f. = q + q^5 + q^9 + q^25 + q^45 + q^49 + q^81 + q^121 + q^125 + q^169 + q^225 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x] + EllipticTheta[ 2, 0, x^5]) / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Jul 08 2015 *)
  • PARI
    {a(n) = issquare(4*n + 1) + issquare(20*n + 5)};

Formula

Expansion of f(-x^2, -x^3) * f(x, -x^4) / f(-x^2, -x^2) = f(x^2, -x^3) * f(x, x^4) / f(-x^10, -x^10) where f(,) is Ramanujan's general theta function. - Michael Somos, Jul 30 2012
Euler transform of period 20 sequence [ 1, 0, -1, 0, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, 0, 0, -1, 0, 1, -1, ...].
a(n) = b(4*n + 1) where b() is multiplicative and b(2^e) = 0^e, b(5^e) = 1, else b(p^e) = (1 + (-1)^e) / 2.
a(9*n + 2) = a(5*n + 1) = a(n), a(5*n + 3) = a(5*n + 4) = a(6*n + 3) = a(6*n + 4) = a(9*n + 5) = a(9*n + 8) = 0.
G.f.: Sum_{k>0} x^(k*(k - 1)) + x^(5*k*(k - 1) + 1).
G.f.: Product_{k>0} (1 - x^(10*k)) * (1 + x^(10*k - 1)) * (1 + x^(10*k-2)) * (1 - x^(10*k - 3)) * (1 + x^(10*k - 4)) * (1 + x^(10*k - 6)) * (1 - x^(10*k - 7)) * (1 + x^(10*k -8)) * (1 + x^(10*k - 9)).
a(2*n) = A010054(n). a(3*n) = A089806(n). a(6*n) = A080995(n).
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1 + 1/sqrt(5) = 1.447213... (A344212). - Amiram Eldar, Dec 29 2023