cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127730 Triangle read by rows: row n consists of the positive integers m where m+n divides m*n.

Original entry on oeis.org

2, 6, 4, 12, 20, 3, 6, 12, 30, 42, 8, 24, 56, 18, 72, 10, 15, 40, 90, 110, 4, 6, 12, 24, 36, 60, 132, 156, 14, 35, 84, 182, 10, 30, 60, 210, 16, 48, 112, 240, 272, 9, 18, 36, 63, 90, 144, 306, 342, 5, 20, 30, 60, 80, 180, 380, 28, 42, 126, 420, 22, 99, 220, 462
Offset: 2

Views

Author

Leroy Quet, Jan 26 2007

Keywords

Comments

The maximum term of the n-th row, for n >= 2, is n*(n-1). The minimum term of row n is A063427(n). Row n contains A063647(n) terms (according to a comment by Benoit Cloitre). For p prime, row p^k has k terms. (Each term in row p^k is of the form p^k*(p^j -1), 1 <= j <= k.)

Examples

			Row 6 is (3,6,12,30) because 6+3 = 9 divides 6*3 = 18, 6+6 = 12 divides 6*6 = 36, 6+12 = 18 divides 6*12 = 72 and 6+30 = 36 divides 6*30 = 180.
		

Crossrefs

Programs

  • Maple
    for n from 2 to 20 do for m from 1 to n*(n-1) do if(m*n mod (m+n) = 0)then printf("%d, ",m): fi: od: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[n_] := Select[Range[n^2], Mod[n*#, n + # ] == 0 &];Table[f[n], {n, 2, 24}] // Flatten (* Ray Chandler, Feb 13 2007 *)
  • PARI
    arow(n)=local(d,m);d=divisors(n^2);vector(#d\2,k,m=d[ #d\2-k+1];n*(n-m)/m) \\ Franklin T. Adams-Watters, Aug 07 2009

Formula

Let d_n be the sequence of divisors of n^2 that are less than n, in reverse order. Then T(n,k) = n*(n-d_n(k))/d_n(k). - Franklin T. Adams-Watters, Aug 07 2009

Extensions

Extended by Ray Chandler, Feb 13 2007