A127749 Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.
1, 0, 3, 0, -3, 5, 0, 3, -5, 7, 0, 0, 0, -7, 9, 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, 0, -11, 13, 0, 3, -5, 7, 0, 0, -13, 15, 0, 0, 0, 0, 0, 0, 0, -15, 17, 0, 0, 0, -7, 9, 0, 0, 0, -17, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21, 0, -3, 5
Offset: 0
Examples
Triangle begins 1; 0, 3; 0, -3, 5; 0, 3, -5, 7; 0, 0, 0, -7, 9; 0, -3, 5, 0, -9, 11; 0, 0, 0, 0, 0, -11, 13; 0, 3, -5, 7, 0, 0, -13, 15; 0, 0, 0, 0, 0, 0, 0, -15, 17; 0, 0, 0, -7, 9, 0, 0, 0, -17, 19; 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21; 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, -21, 23; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 25; Inverse of triangle 1; 0, 1/3; 0, 1/5, 1/5; 0, 0, 1/7, 1/7; 0, 0, 1/9, 1/9, 1/9; 0, 0, 0, 1/11, 1/11, 1/11; 0, 0, 0, 1/13, 1/13, 1/13, 1/13; 0, 0, 0, 0, 1/15, 1/15, 1/15, 1/15; 0, 0, 0, 0, 1/17, 1/17, 1/17, 1/17, 1/17; 0, 0, 0, 0, 0, 1/19, 1/19, 1/19, 1/19, 1/19; 0, 0, 0, 0, 0, 1/21, 1/21, 1/21, 1/21, 1/21, 1/21;
Crossrefs
Cf. A111967.
Programs
-
Maple
A127749 := proc(n,k) option remember ; if k > n then 0 ; elif k = n then 2*n+1 ; else -(2*k+1)*add( procname(n,i)/(2*i+1),i=k+1..min(n,2*k)) ; end if; end proc: seq(seq( A127749(n,k),k=0..n),n=0..20) ; # R. J. Mathar, Feb 09 2021
-
Mathematica
nmax = 10; A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0]; invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]]; T[n_, k_] := invA[[n+1, k+1]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 05 2020 *)
Formula
T(n,k) = (2*k+1)*A111967(n,k). - R. J. Mathar, Apr 21 2021
Comments