cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127749 Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.

Original entry on oeis.org

1, 0, 3, 0, -3, 5, 0, 3, -5, 7, 0, 0, 0, -7, 9, 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, 0, -11, 13, 0, 3, -5, 7, 0, 0, -13, 15, 0, 0, 0, 0, 0, 0, 0, -15, 17, 0, 0, 0, -7, 9, 0, 0, 0, -17, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21, 0, -3, 5
Offset: 0

Views

Author

Paul Barry, Jan 28 2007

Keywords

Comments

Conjectures: row sums modulo 2 are the Fredholm-Rueppel sequence A036987; row sums of triangle modulo 2 are A111982. Row sums are A127750.
The first conjecture is equivalent to the row sums conjecture in A111967. - R. J. Mathar, Apr 21 2021

Examples

			Triangle begins
  1;
  0,  3;
  0, -3,  5;
  0,  3, -5,  7;
  0,  0,  0, -7,  9;
  0, -3,  5,  0, -9,  11;
  0,  0,  0,  0,  0, -11,  13;
  0,  3, -5,  7,  0,   0, -13,  15;
  0,  0,  0,  0,  0,   0,   0, -15,  17;
  0,  0,  0, -7,  9,   0,   0,   0, -17,  19;
  0,  0,  0,  0,  0,   0,   0,   0,   0, -19,  21;
  0, -3,  5,  0, -9,  11,   0,   0,   0,   0, -21,  23;
  0,  0,  0,  0,  0,   0,   0,   0,   0,   0,   0, -23, 25;
Inverse of triangle
  1;
  0, 1/3;
  0, 1/5, 1/5;
  0,  0,  1/7, 1/7;
  0,  0,  1/9, 1/9,  1/9;
  0,  0,   0,  1/11, 1/11, 1/11;
  0,  0,   0,  1/13, 1/13, 1/13, 1/13;
  0,  0,   0,   0,   1/15, 1/15, 1/15, 1/15;
  0,  0,   0,   0,   1/17, 1/17, 1/17, 1/17, 1/17;
  0,  0,   0,   0,    0,   1/19, 1/19, 1/19, 1/19, 1/19;
  0,  0,   0,   0,    0,   1/21, 1/21, 1/21, 1/21, 1/21, 1/21;
		

Crossrefs

Cf. A111967.

Programs

  • Maple
    A127749 := proc(n,k)
        option remember ;
        if k > n then
            0 ;
        elif k = n then
            2*n+1 ;
        else
            -(2*k+1)*add( procname(n,i)/(2*i+1),i=k+1..min(n,2*k)) ;
        end if;
    end proc:
    seq(seq( A127749(n,k),k=0..n),n=0..20) ; # R. J. Mathar, Feb 09 2021
  • Mathematica
    nmax = 10;
    A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0];
    invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]];
    T[n_, k_] := invA[[n+1, k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 05 2020 *)

Formula

T(n,k) = (2*k+1)*A111967(n,k). - R. J. Mathar, Apr 21 2021