A127823 Weighted Catalan numbers: number of combinatorial types of plane Morse links of order n.
1, 1, 10, 325, 22150, 2586250, 461242900, 116651486125, 39713286199150, 17511670912894750, 9709015945443877900, 6610669330703494665250, 5422712627276230973347900, 5274585355686671613655544500
Offset: 0
Keywords
Examples
From _Gary W. Adamson_, Jul 18 2011: (Start) The first few rows of matrix M are: 1, 1, 0, 0, 0, ... 9, 9, 9, 0, 0, ... 25, 25, 25, 25, 0, ... 49, 49, 49, 49, 49, ... (End)
Links
- Yibo Gao, Andrew Gu, Arithmetic of weighted Catalan numbers, arXiv:1908.03914 [math.CO], 2019.
- Alexander Postnikov, Bruce Sagan, What power of two divides a weighted Catalan number?, arXiv:math/0601339 [math.CO], 2006.
- Sarah Shader, Weighted Catalan Numbers and Their Divisibility Properties, Research Science Institute, MIT, 2014.
Programs
-
Maple
nmax:=13: M := Matrix(1..nmax+1,1..nmax+1): for i from 1 to nmax do for j from 1 to i+1 do M[i,j]:= (2*i-1)^2 od: od: for n from 0 to nmax do B:=M^n: a(n):=B[1,1] od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 21 2011
-
Mathematica
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1]-1)^2*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2017 *)
-
PARI
{a(n)=local(CF=1/(1-(2*n+1)^2*x+x*O(x^n))); if(n==0,CF=1,for(i=1,n,CF=1/(1-(2*(n-i)+1)^2*x*CF)));polcoeff(CF,n)}
Formula
O.g.f.: A(x) = 1/(1-x/(1-3^2*x/(1-5^2*x/(1-.../(1 - (2*n-1)^2*x/(1-... )))))) (continued fraction).
G.f.: 1/Q(0), where Q(k) = 1 - (2*k+1)^2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = the upper left term in M^n where M is an infinite square production matrix; M[i,j] = A016754(i-1) = (2*i-1)^2, i >= 1 and 1 <= j <= i+1, and M[i,j] = 0, i >= 1 and j >= i+2, see the examples. - Gary W. Adamson, Jul 18 2011
G.f.: Q(0), where Q(k) = 1 - x*(4*k+1)^2/( x*(4*k+1)^2 - 1/(1 - x*(4*k+3)^2/( x*(4*k+3)^2 - 1/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
a(n) ~ 2^(6*n + 1) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n + 1/2)). - Vaclav Kotesovec, Aug 26 2017
Comments