A127836 Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^(n-1)*P_{n-2}(x).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 5, 5
Offset: 0
Examples
Triangle begins: 1; 1; 1, 1; 1, 1, 1; 1, 1, 1, 1, 1; 1, 1, 1, 1, 2, 1, 1; 1, 1, 1, 1, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1; 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 4, 4, 3, 3, 2, 2, 1, 1; ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..9548 (rows n=0..48 of triangle, flattened).
- M. Barnabei, F. Bonetti, S. Elizalde, M. Silimbani, Descent sets on 321-avoiding involutions and hook decompositions of partitions, arXiv preprint arXiv:1401.3011 [math.CO], 2014.
- A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp. See Identity 3-18, pp. 26-27.
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Maple
P[0]:=1; P[1]:=1; d:=[0,0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^(n-1)*P[n-2]); lprint(seriestolist(series(P[n],q,M^2))); d:=[op(d),degree(P[n],q)]; od: d;
-
Mathematica
P[0] = P[1] = 1; P[n_] := P[n] = P[n-1] + x^(n-1) P[n-2]; Table[CoefficientList[P[n], x], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 23 2018 *)
-
Maxima
P(n, x) := if n = 0 or n = 1 then 1 else P(n - 1, x) + x^(n - 1)*P(n - 2, x)$ create_list(ratcoef(expand(P(n, x)), x, k), n, 0, 10, k, 0, floor(n^2/4)); /* Franck Maminirina Ramaharo, Nov 30 2018 */
Comments