cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127839 a(1)=1, a(2)=...=a(5)=0, a(n) = a(n-5) + a(n-4) for n > 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 4, 6, 4, 2, 5, 10, 10, 6, 7, 15, 20, 16, 13, 22, 35, 36, 29, 35, 57, 71, 65, 64, 92, 128, 136, 129, 156, 220, 264, 265, 285, 376, 484, 529, 550, 661, 860, 1013, 1079, 1211
Offset: 1

Views

Author

Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007

Keywords

Comments

Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n) = a(n-k) + a(n-k+1) for n > k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.

References

  • S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,1,1},{1,0,0,0,0},70] (* Harvey P. Dale, Mar 19 2012 *)

Formula

Binet-like formula: a(n) = Sum_{i=1...5} (r_i^n)/(4(r_i)^2+5(r_i)) where r_i is a root of x^5=x+1.
G.f.: x*(x^4-1)/(x^5+x^4-1). - Harvey P. Dale, Mar 19 2012
a(n) = A017827(n-6) for n >= 6. - R. J. Mathar, May 09 2013