A127895 Riordan array (1/(1+x)^3, x/(1+x)^3).
1, -3, 1, 6, -6, 1, -10, 21, -9, 1, 15, -56, 45, -12, 1, -21, 126, -165, 78, -15, 1, 28, -252, 495, -364, 120, -18, 1, -36, 462, -1287, 1365, -680, 171, -21, 1, 45, -792, 3003, -4368, 3060, -1140, 231, -24, 1, -55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1
Offset: 0
Examples
Triangle begins 1; -3, 1; 6, -6, 1; -10, 21, -9, 1; 15, -56, 45, -12, 1; -21, 126, -165, 78, -15, 1; 28, -252, 495, -364, 120, -18, 1; -36, 462, -1287, 1365, -680, 171, -21, 1; 45, -792, 3003, -4368, 3060, -1140, 231, -24, 1; -55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1; 66, -2002, 12870, -31824, 38760, -26334, 10626, -2600, 378, -30, 1;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Magma
[(-1)^(n-k)*Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
-
Maple
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left. InvPMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
-
Mathematica
Table[(-1)^(n-k)*Binomial[n+2*k+2, n-k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
-
PARI
for(n=0, 10, for(k=0,n, print1((-1)^(n-k)*binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
-
Sage
flatten([[(-1)^(n-k)*binomial(n+2*k+2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
Formula
Extensions
Terms a(50) onward added by G. C. Greubel, Apr 29 2018
Comments