A127899 Transform related to the harmonic series.
1, -2, 2, 0, -3, 3, 0, 0, -4, 4, 0, 0, 0, -5, 5, 0, 0, 0, 0, -6, 6, 0, 0, 0, 0, 0, -7, 7, 0, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, -9, 9, 0, 0, 0, 0, 0, 0, 0, 0, -10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 12
Offset: 1
Examples
First few rows of the triangle are: 1; -2, 2; 0, -3, 3; 0, 0, -4, 4; 0, 0, 0, -5, 5; 0, 0, 0, 0, -6, 6; 0, 0, 0, 0, 0, -7, 7; ... From _Boris Putievskiy_, Jan 17 2013: (Start) The start of the sequence as table: 1..-1..0..0..0..0..0... 1..-2..0..0..0..0..0... 2..-3..0..0..0..0..0... 3..-4..0..0..0..0..0... 4..-5..0..0..0..0..0... 5..-6..0..0..0..0..0... 6..-7..0..0..0..0..0... ... The start of the sequence as triangle array read by rows: 1; -1,1; 0,-2,2; 0,0,-3,3; 0,0,0,-4,4; 0,0,0,0,-5,5; 0,0,0,0,0,-6,6; 0,0,0,0,0,0,-7,7; ... Row number r (r>4) contains (r-2) times '0', then '-r' and 'r'. (End)
Links
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Cf. A002467.
Programs
-
Haskell
a127899 n k = a127899_tabl !! (n-1) !! (k-1) a127899_row n = a127899_tabl !! (n-1) a127899_tabl = map reverse ([1] : xss) where xss = iterate (\(u : v : ws) -> u + 1 : v - 1 : ws ++ [0]) [2, -2] -- Reinhard Zumkeller, Nov 14 2014
-
Maple
A127899 := proc(n,k) if k = n then n; elif k = n-1 then -n; else 0; end if; end proc: seq(seq( A127899(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Jul 19 2024
-
Mathematica
Table[Module[{t = Floor[(-1 + Sqrt[8 n - 7])/2], i}, i = n - t (t + 1)/2; Floor[(i + 2)/(t + 2)] (t + 1) (-1)^(i + t + 1)], {n, 78}] (* or *) Table[If[n == 1, {n}, ConstantArray[0, n - 2]~Join~{-n, n}], {n, 12}] // Flatten (* Michael De Vlieger, Feb 11 2017 *)
-
Python
from math import isqrt def A127899(n): return -(isqrt(n<<3)+1>>1)**2+(m:=isqrt(n+1<<3)+1>>1)*((m<<1)-1)+(k:=isqrt(n+2<<3)+1>>1)*(1-k)>>1 # Chai Wah Wu, Jun 08 2025
Formula
Triangle, a(1) = 1; by rows, (n-2) zeros followed by -n, n.
From Boris Putievskiy, Jan 17 2013: (Start)
a(n) = floor((i+2)/(t+2))*(t+1)*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)
Comments