cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127905 Construct triangle in which n-th row is obtained by expanding (1+x+x^3)^n and take the next-to-central column.

Original entry on oeis.org

0, 1, 2, 3, 8, 25, 66, 168, 456, 1269, 3490, 9581, 26544, 73944, 206220, 576045, 1613264, 4527661, 12725946, 35818135, 100950440, 284869263, 804726934, 2275500998, 6440230392, 18242735800, 51714552656
Offset: 0

Views

Author

Paul Barry, Feb 05 2007

Keywords

Crossrefs

Cf. A005717.

Programs

  • Magma
    [0] cat [n*(&+[Binomial(n-1,3*k)*Binomial(3*k,k)/(2*k+1): k in [0..Floor((n-1)/3)]]): n in [1..30]]; // G. C. Greubel, Apr 30 2018
  • Maple
    A127905 := proc(n)
        n*add(binomial(n-1,3*k)*binomial(3*k,k)/(2*k+1),k=0..floor((n-1)/3)) ;
    end proc: # R. J. Mathar, Feb 23 2015
  • Mathematica
    Table[n*Sum[Binomial[n-1,3*k]*Binomial[3*k,k]/(2*k+1), {k, 0, Floor[(n -1)/3]}], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+x+x^3)^n, n-1));
    
  • PARI
    a(n)=if(n<0, 0, n++; n*polcoeff(serreverse(x/(1+x+x^3)+x*O(x^n)), n))
    

Formula

a(n) = n*A071879(n-1).
a(n) = n*Sum_{k=0..floor((n-1)/3)} C(n-1,3*k)*C(3*k,k)/(2*k+1).
a(n) = Sum_{k=0..floor((n-1)/3)} (3*k+1)*C(n,3*k+1)*C(3*k,k)/(2k+1).
a(n) = Sum_{k=0..n-1} Sum_{j=0..floor(k/3)} C(k,3*j)*C(3*j+1,j).
Conjecture: 2*(2*n+1)*(n-1)^2*a(n) -2*n*(6*n^2-12*n+5)*a(n-1) +6*n*(n-1)*(2*n-3)*a(n-2) -31*n*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Feb 23 2015
a(n) ~ (1 + 3/2^(2/3))^(n + 1/2) / sqrt(12*Pi*n). - Vaclav Kotesovec, May 01 2018

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009