cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127909 Number of different digraphs on n unlabeled nodes which are not graphs.

Original entry on oeis.org

0, 0, 1, 12, 207, 9574, 1540788, 882032396, 1793359180502, 13027956824124884, 341260431952960575184, 32522909385055885092199576, 11366745430825400574268802831632, 14669085692712929869037045573284852976, 70315656615234999521385506526925748433982432
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

A digraph is (isomorphic to) a graph if every pair of points a, b joined by a directed edge (a,b) also has the reverse directed edge (b,a). A digraph which is not a graph is a digraph with at least one pair of points which have only one directed edge connecting them.

Examples

			a(2) = 1 because with two points a and b, either there are no edges connecting them, or there is one directed edge between them, or there is a bidirectional pair of edges between them; only the case with one directed edge is the unique 2-point digraph which is not a graph.
		

Crossrefs

Programs

  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A127909(n): return int(sum(Fraction((1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = A000273(n) - A000088(n).

A127911 Number of nonisomorphic partial functional graphs with n points which are not functional graphs.

Original entry on oeis.org

0, 1, 3, 9, 26, 74, 208, 586, 1647, 4646, 13135, 37247, 105896, 301880, 862498, 2469480, 7083690, 20353886, 58571805, 168780848, 486958481, 1406524978, 4066735979, 11769294050, 34090034328, 98820719105, 286672555274
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

Partial functional graphs (digraphs) with at least one node of outdegree = 0.

Examples

			a(0) = 0 because the null graph is trivially both partial functional and functional.
a(1) = 1 because there are two partial functional graphs on one point: the point with, or without, a loop; the point with loop is the identity function, but without a loop the naked point is the unique merely partial functional case.
a(2) = 3 because there are A126285(2) enumerates the 6 partial functional graphs on 2 points, of which 3 are functional, 6 - 3 = 3.
a(3) = A126285(3) - A001372(3) = 16 - 7 = 9.
a(4) = 45 - 19 = 26.
a(5) = 121 - 47 = 74.
a(6) = 338 - 130 = 208.
a(7) = 929 - 343 = 586.
a(8) = 2598 - 951 = 1647.
a(9) = 7261 - 2615 = 4646.
a(10) = 20453 - 7318 = 13135.
		

References

  • S. Skiena, "Functional Graphs." Section 4.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 164-165, 1990.

Crossrefs

Formula

a(n) = A126285(n) - A001372(n).
Euler transform of (A002861 + A000081) - Euler transform of A002861.

A127912 Number of nonisomorphic disconnected mappings (or mapping patterns) from n points to themselves; number of disconnected endofunctions.

Original entry on oeis.org

0, 1, 3, 10, 27, 79, 218, 622, 1753, 5007, 14274, 40954, 117548, 338485, 975721, 2817871, 8146510, 23581381, 68322672, 198138512, 575058726, 1670250623, 4854444560, 14117859226, 41081418963, 119606139728
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

Number of endofunctions on n points whose functional digraphs (with loops allowed) are nontrivially the directed sum of two or more digraphs of endofunctions.

Examples

			a(0) = 0, as the null digraph is formally neither connected nor disconnected.
a(1) = 0, as the unique endofunction on one point is the identity function on one value and is connected.
a(2) = 1, as there are 3 endofunctions on two points, two of which are "prime endofunctions" and one of which is the direct sum of two copies of the unique endofunction on one point, namely two points-with-loops, or the identity function on two values; 3 - 2 = 1.
a(3) = A001372(3) - A002861(3) = 7 - 4 = 3.
a(4) = A001372(4) - A002861(4) = 19 - 9 = 10.
a(5) = A001372(5) - A002861(5) = 47 - 20 = 27.
a(6) = 130 - 51 = 79.
a(7) = 343 - 125 = 218.
a(8) = 951 - 329 = 622.
a(9) = 2615 - 862 = 1753.
a(10) = 7318 - 2311 = 5007.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399 and 41.401.

Crossrefs

Formula

a(n) = A001372(n) - A002861(n).
Showing 1-3 of 3 results.