cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127977 The minimum excess in the prime race of odious primes versus evil primes in the interval (2^(n-1),2^n).

Original entry on oeis.org

0, 1, 4, 7, 13, 19, 39, 53, 104, 138, 251, 334, 590, 715, 1353, 1855, 3659, 5221, 10484, 14933, 27491, 35474, 68816, 97342, 186405, 265255
Offset: 5

Views

Author

Jonathan Vos Post, Jun 07 2007

Keywords

Comments

Shevelev conjectures (p.2) that for all natural numbers n other than 5 and 6, the number of evil primes not exceeding n <= the number of odious primes not exceeding n. Odious primes are A027697. Evil primes are A027699.

Examples

			OdiPrimePi(x) for x >= 32 is 6, 6, 6, 6, 6, 7, 7, 7, 7, 8,.. and EviPrimePi(x) for x>=32 is 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,...
The difference OdiPrimePi(x)-EviPrimePi(x) is 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3,.. so the minimum of the difference in the interval 2^(6-1)..2^6 is 1, yielding a(6)=1.
		

Crossrefs

Programs

  • Maple
    read("transforms") ; # see oeis.org/transforms.txt
    isA000069 := proc(n) type(wt(n),'odd') ; end proc;
    isA027697 := proc(n) isprime(n) and isA000069(n) ; end proc:
    isA027699 := proc(n) isprime(n) and not isA000069(n) ; end proc:
    odiPi := proc(n) option remember; if n = 0 then 0; else an1 := procname(n-1) ; if isA027697(n) then an1+1 ; else an1 ; end if; end if; end proc:
    eviPi := proc(n) option remember; if n = 0 then 0; else an1 := procname(n-1) ; if isA027699(n) then an1+1 ; else an1 ; end if; end if; end proc:
    oddPi := proc(n) odiPi(n)-eviPi(n) ; end proc:
    A127977 := proc(n) local a,x ; a := 2^(n+1) ; for x from 2^(n-1)+1 to 2^n-1 do a := min(a,oddPi(x)) ; end do: a; end proc:
    for n from 5 do print(n,A127977(n)) ; end do; # R. J. Mathar, Sep 03 2011
  • Mathematica
    wt[n_] := DigitCount[n, 2, 1];
    isA000069[n_] := OddQ[wt[n]];
    isA027697[n_] := PrimeQ[n] && isA000069[n];
    isA027699[n_] := PrimeQ[n] && !isA000069[n];
    odiPi[n_] := odiPi[n] = If[n==0, 0, an1 = odiPi[n-1]; If[isA027697[n], an1+1, an1]];
    eviPi[n_] := eviPi[n] = If[n==0, 0, an1 = eviPi[n-1]; If[isA027699[n], an1+1, an1]];
    oddPi[n_] := odiPi[n] - eviPi[n];
    A127977[n_] := Module[{a, x}, a = 2^(n+1); For[x = 2^(n-1)+1, x <= 2^n-1, x++, a = Min[a, oddPi[x]]]; a];
    Table[an = A127977[n]; Print[an]; an, {n, 5, 30}] (* Jean-François Alcover, Jan 23 2018, after R. J. Mathar *)

Extensions

Published numbers corrected and checked up to n=23 by R. J. Mathar, Sep 03 2011