cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128015 Binomial coefficients C(2n+1,n) repeated.

Original entry on oeis.org

1, 1, 3, 3, 10, 10, 35, 35, 126, 126, 462, 462, 1716, 1716, 6435, 6435, 24310, 24310, 92378, 92378, 352716, 352716, 1352078, 1352078, 5200300, 5200300, 20058300, 20058300, 77558760, 77558760, 300540195, 300540195
Offset: 0

Views

Author

Paul Barry, Feb 11 2007

Keywords

Comments

Hankel transform is A128017. Binomial transform is A005717(n+1).

Crossrefs

Programs

  • Mathematica
    With[{c=Table[Binomial[2n+1,n],{n,0,20}]},Riffle[c,c]] (* Harvey P. Dale, May 02 2012 *)

Formula

G.f.: (1+x)*c(x^2)/sqrt(1-4x^2), c(x) the g.f. of A000108.
E.g.f.: exp(-x)*dif(exp(x)*Bessel_I(1,2x),x).
a(n) = C(n+1, n/2)*(1+(-1)^n)/2 + C(n, (n-1)/2)*(1-(-1)^n)/2; as moment sequence a(n) = (1/(2*Pi))*Integral_{x=-2..2} x^n*x*(1+x)/sqrt(4-x^2).
D-finite with recurrence: -(n+2)*(3*n-1)*a(n) - 4*a(n-1) + 4*n*(3*n+2)*a(n-2) = 0. - R. J. Mathar, Jun 17 2016
a(n) = A001700(floor(n/2)). - Georg Fischer, Nov 28 2022