A128079 a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1), where A000984 is the central binomial coefficients and A001263 is the Narayana triangle.
1, 3, 13, 69, 411, 2633, 17739, 124029, 892327, 6567285, 49235715, 374841195, 2890994445, 22545855855, 177524073021, 1409591810133, 11275693221519, 90792020672429, 735367765159347, 5987665336600683, 48987680485918149
Offset: 0
Keywords
Examples
Illustrate a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1) by: a(2) = 1*(1) + 2*(3) + 6*(1) = 13; a(3) = 1*(1) + 2*(6) + 6*(6) + 20*(1) = 69; a(4) = 1*(1) + 2*(10)+ 6*(20)+ 20*(10)+ 70*(1) = 411. The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins: 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 20, 10, 1; 1, 15, 50, 50, 15, 1; ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
-
PARI
{a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1))}
Formula
a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1).
Recurrence: (n+1)*(n+2)*a(n) = (7*n^2+11*n+6)*a(n-1) + 3*(7*n^2-19*n+6)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+7/2)/(8*Pi*n^2) . - Vaclav Kotesovec, Oct 20 2012