cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128079 a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1), where A000984 is the central binomial coefficients and A001263 is the Narayana triangle.

Original entry on oeis.org

1, 3, 13, 69, 411, 2633, 17739, 124029, 892327, 6567285, 49235715, 374841195, 2890994445, 22545855855, 177524073021, 1409591810133, 11275693221519, 90792020672429, 735367765159347, 5987665336600683, 48987680485918149
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2007

Keywords

Examples

			Illustrate a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1) by:
a(2) = 1*(1) + 2*(3) + 6*(1) = 13;
a(3) = 1*(1) + 2*(6) + 6*(6) + 20*(1) = 69;
a(4) = 1*(1) + 2*(10)+ 6*(20)+ 20*(10)+ 70*(1) = 411.
The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 20, 10, 1;
1, 15, 50, 50, 15, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1))}

Formula

a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1).
Recurrence: (n+1)*(n+2)*a(n) = (7*n^2+11*n+6)*a(n-1) + 3*(7*n^2-19*n+6)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+7/2)/(8*Pi*n^2) . - Vaclav Kotesovec, Oct 20 2012
a(n) = ((n+3)^2*A005802(n+1)-(n-3)*(n+1)*A005802(n))/12. - Mark van Hoeij, Nov 12 2023