A128088 a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1), where A000108 is the Catalan numbers and A001263 is the Narayana triangle.
1, 2, 6, 24, 115, 618, 3591, 22088, 141903, 943590, 6452490, 45159480, 322305165, 2339100078, 17223121350, 128428689888, 968383277791, 7374380672718, 56655414930642, 438741242896680, 3422125459579869, 26866961380274598, 212191772351034249, 1685036376746788392
Offset: 0
Keywords
Examples
Illustrate a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1) by: a(2) = 1*(1) + 1*(3) + 2*(1) = 6; a(3) = 1*(1) + 1*(6) + 2*(6) + 5*(1) = 24; a(4) = 1*(1) + 1*(10)+ 2*(20)+ 5*(10)+ 14*(1) = 115. The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins: 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 20, 10, 1; 1, 15, 50, 50, 15, 1; ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Programs
-
Maple
a := n -> hypergeom([1/2, -n - 1, -n], [2, 2], 4): seq(simplify(a(n)), n = 0..23); # Peter Luschny, Nov 06 2023
-
Mathematica
Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1)^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *) Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2016 *)
-
PARI
{a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1)^2)}
Formula
a(n) = (n+1)*A005802(n), where A005802(n) = number of permutations in S_n with longest increasing subsequence of length <= 3.
a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1)^2.
Recurrence: (n+2)^2*a(n) = (n+1)*(7*n+2)*a(n-1) + 3*(n-2)*(7*n-4)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+9/2)/(16*Pi*n^3). - Vaclav Kotesovec, Oct 20 2012
a(n) = hypergeom([1/2, -n - 1, -n], [2, 2], 4). - Vaclav Kotesovec, May 14 2016
Comments