cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128088 a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1), where A000108 is the Catalan numbers and A001263 is the Narayana triangle.

Original entry on oeis.org

1, 2, 6, 24, 115, 618, 3591, 22088, 141903, 943590, 6452490, 45159480, 322305165, 2339100078, 17223121350, 128428689888, 968383277791, 7374380672718, 56655414930642, 438741242896680, 3422125459579869, 26866961380274598, 212191772351034249, 1685036376746788392
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2007

Keywords

Comments

a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2>3>4} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the element in position 1 is larger than the element in position 2, which in turn is larger than the element in position 3, and that element is larger than the element in position 4. - Sergey Kitaev, Dec 13 2020

Examples

			Illustrate a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1) by:
a(2) = 1*(1) + 1*(3) + 2*(1) = 6;
a(3) = 1*(1) + 1*(6) + 2*(6) + 5*(1) = 24;
a(4) = 1*(1) + 1*(10)+ 2*(20)+ 5*(10)+ 14*(1) = 115.
The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 20, 10, 1;
1, 15, 50, 50, 15, 1; ...
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n - 1, -n], [2, 2], 4):
    seq(simplify(a(n)), n = 0..23);  # Peter Luschny, Nov 06 2023
  • Mathematica
    Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1)^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1)^2)}

Formula

a(n) = (n+1)*A005802(n), where A005802(n) = number of permutations in S_n with longest increasing subsequence of length <= 3.
a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1)^2.
Recurrence: (n+2)^2*a(n) = (n+1)*(7*n+2)*a(n-1) + 3*(n-2)*(7*n-4)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+9/2)/(16*Pi*n^3). - Vaclav Kotesovec, Oct 20 2012
a(n) = hypergeom([1/2, -n - 1, -n], [2, 2], 4). - Vaclav Kotesovec, May 14 2016