A128092 a(n) = largest multiple of n which is <= 2^n.
2, 4, 6, 16, 30, 60, 126, 256, 504, 1020, 2046, 4092, 8190, 16380, 32760, 65536, 131070, 262134, 524286, 1048560, 2097144, 4194300, 8388606, 16777200, 33554425, 67108860, 134217702, 268435440, 536870910, 1073741820, 2147483646
Offset: 1
Keywords
Programs
-
Maple
a:=n->n*floor(2^n/n): seq(a(n),n=1..37); # Emeric Deutsch, Feb 16 2007
-
Mathematica
f[n_] := n*Floor[2^n/n];Array[f, 33] (* Ray Chandler, Feb 19 2007 *)
-
Python
def A128092(n): return (m:=1<
Chai Wah Wu, Aug 24 2023
Formula
a(n) = n*floor(2^n/n) = n*A000799(n).
a(n) = 2^n - (2^n mod n). - Chai Wah Wu, Aug 24 2023
Extensions
Extended by Emeric Deutsch and Ray Chandler, Feb 19 2007