cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128128 Expansion of chi(-q^3) / chi^3(-q) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 6, 12, 21, 36, 60, 96, 150, 228, 342, 504, 732, 1050, 1488, 2088, 2901, 3996, 5460, 7404, 9972, 13344, 17748, 23472, 30876, 40413, 52644, 68268, 88152, 113364, 145224, 185352, 235734, 298800, 377514, 475488, 597108, 747690, 933672, 1162824
Offset: 0

Views

Author

Michael Somos, Feb 15 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*q + 6*q^2 + 12*q^3 + 21*q^4 + 36*q^5 + 60*q^6 + 96*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^3 QPochhammer[ q^3] / (QPochhammer[ q]^3 QPochhammer[ q^6]), {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(2*k))^3 * (1-x^(3*k)) / ((1-x^k)^3 * (1-x^(6*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) / (eta(x + A)^3 * eta(x^6 + A)), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^3) / (eta(q)^3 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 3, 0, 2, 0, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 + v - 2*u*v^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u + u^2 + u^3) - v^3*(1 - 2*u + 4*u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^5)) where f(u, v) = u^6 + v^6 - 16*u^5*v^5 + 20*u^4*v^4 + 10*u^2*v^2*(u^3 + v^3) - 20*u^3*v^3 - 5*u*v*(u^3 + v^3) + 5*u^2*v^2 - u*v.
Expansion of b(q^2) / b(q) in powers of q where b() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A062242.
a(n) = 3*A128129(n) unless n=0.
Convolution inverse of A141094. - Michael Somos, Feb 19 2015
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(7/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015