cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128129 Expansion of (chi(-q^3)/ chi^3(-q) -1)/3 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 7, 12, 20, 32, 50, 76, 114, 168, 244, 350, 496, 696, 967, 1332, 1820, 2468, 3324, 4448, 5916, 7824, 10292, 13471, 17548, 22756, 29384, 37788, 48408, 61784, 78578, 99600, 125838, 158496, 199036, 249230, 311224, 387608, 481506, 596676
Offset: 1

Views

Author

Michael Somos, Feb 15 2007

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

A128128(n)=3*a(n) if n>0.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(18*k))*(1 - x^(18*k - 3))*(1 - x^(18*k - 15))/((1 - x^(2*k - 1))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2017 *)
  • PARI
    {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x^2+A)* eta(x^3+A)* eta(x^18+A)^2/ (eta(x^6+A)* eta(x^9+A)* eta(x+A)^2), n))}

Formula

Expansion of (eta(q^2)^3* eta(q^3)/ (eta(q)^3* eta(q^6)) -1)/3 in powers of q.
Euler transform of period 18 sequence [ 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v -2*v^2 -4*u*v -6*u*v^2.
G.f. A(x) satisfies 0=f(A(x), A(x^3)) where f(u, v)= u^3 -v* (1+3*v+3*v^2)* (1+6*u+12*u^2).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(7/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jan 12 2017