A128129 Expansion of (chi(-q^3)/ chi^3(-q) -1)/3 in powers of q where chi() is a Ramanujan theta function.
1, 2, 4, 7, 12, 20, 32, 50, 76, 114, 168, 244, 350, 496, 696, 967, 1332, 1820, 2468, 3324, 4448, 5916, 7824, 10292, 13471, 17548, 22756, 29384, 37788, 48408, 61784, 78578, 99600, 125838, 158496, 199036, 249230, 311224, 387608, 481506, 596676
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10001
- Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
- Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S76.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
A128128(n)=3*a(n) if n>0.
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(18*k))*(1 - x^(18*k - 3))*(1 - x^(18*k - 15))/((1 - x^(2*k - 1))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2017 *)
-
PARI
{a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x^2+A)* eta(x^3+A)* eta(x^18+A)^2/ (eta(x^6+A)* eta(x^9+A)* eta(x+A)^2), n))}
Formula
Expansion of (eta(q^2)^3* eta(q^3)/ (eta(q)^3* eta(q^6)) -1)/3 in powers of q.
Euler transform of period 18 sequence [ 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v -2*v^2 -4*u*v -6*u*v^2.
G.f. A(x) satisfies 0=f(A(x), A(x^3)) where f(u, v)= u^3 -v* (1+3*v+3*v^2)* (1+6*u+12*u^2).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(7/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jan 12 2017
Comments