cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128173 Numbers in ternary reflected Gray code order.

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 7, 8, 17, 16, 15, 12, 13, 14, 11, 10, 9, 18, 19, 20, 23, 22, 21, 24, 25, 26, 53, 52, 51, 48, 49, 50, 47, 46, 45, 36, 37, 38, 41, 40, 39, 42, 43, 44, 35, 34, 33, 30, 31, 32, 29, 28, 27, 54, 55, 56, 59, 58, 57, 60, 61, 62, 71, 70, 69, 66, 67, 68, 65, 64, 63, 72
Offset: 0

Views

Author

Ralf Stephan, May 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A128173 := proc(nmax) local K,tmp,n3,n,r,c,t,a ; n3 := 3 ; n := 1 ; K := linalg[matrix](n3,1,[[0],[1],[2]]) ; while n3 < nmax do n3 := n3*3 ; n := n+1 ; tmp := K ; K := linalg[extend](K,2*n3/3,1,0) ; K := linalg[copyinto](tmp,K,1+n3/3,1) ; K := linalg[copyinto](tmp,K,1+2*n3/3,1) ; for r from 1 to n3 do K[r,n] := floor((r-1)/(n3/3)) ; od ; for r from n3/3+1 to n3/2 do for c from 1 to n do t := K[r,c] ; K[r,c] := K[n3+1-r,c] ; K[n3+1-r,c] := t ; od ; od ; od ; a := [] ; for r from 1 to n3 do a := [op(a), add( K[r,c]*3^(c-1),c=1..n) ] ; od ; a ; end: A128173(30) ; # R. J. Mathar, Jun 17 2007
  • Mathematica
    a[n_] := Module[{v, r, i}, v = IntegerDigits[n, 3]; r = 0; For[i = 1, i <= Length[v], i++, If[r == 1, v[[i]] = 2 - v[[i]]]; r = Mod[r + v[[i]], 2]]; FromDigits[v, 3]];
    a /@ Range[0, 100] (* Jean-François Alcover, Jul 18 2020, after Kevin Ryde *)
  • PARI
    a(n) = my(v=digits(n,3),r=Mod(0,2)); for(i=1,#v, if(r,v[i]=2-v[i]); r+=v[i]); fromdigits(v,3); \\ Kevin Ryde, May 21 2020

Extensions

More terms from R. J. Mathar, Jun 17 2007
Offset changed to 0 by Alois P. Heinz, Feb 23 2018