Original entry on oeis.org
1, 0, 2, 1, 3, 3, 2, 6, 8, 4, 4, 12, 18, 15, 5, 8, 24, 38, 40, 24, 6, 16, 48, 78, 93, 75, 35, 7, 32, 96, 158, 202, 194, 126, 48, 8, 64, 192, 318, 423, 453, 362, 196, 63, 9, 128, 384, 638, 868, 996, 914, 622, 288, 80, 10
Offset: 0
First few rows of the triangle are:
1;
0, 2;
1, 3, 3;
2, 6, 8, 4;
4, 12, 18, 15, 5;
8, 24, 38, 40, 24, 6;
16, 48, 78, 93, 75, 35, 7;
...
A209279
First inverse function (numbers of rows) for pairing function A185180.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 2, 3, 1, 4, 3, 2, 4, 1, 5, 3, 4, 2, 5, 1, 6, 4, 3, 5, 2, 6, 1, 7, 4, 5, 3, 6, 2, 7, 1, 8, 5, 4, 6, 3, 7, 2, 8, 1, 9, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1, 12, 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13
Offset: 1
The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
1...1...2...2...3...3...4...4...
2...1...3...2...4...3...5...4...
3...1...4...2...5...3...6...4...
4...1...5...2...6...3...7...4...
5...1...6...2...7...3...8...4...
6...1...7...2...8...3...9...4...
7...1...8...2...9...3..10...4...
...
The start of the sequence as triangle array read by rows:
1;
1, 2;
2, 1, 3;
2, 3, 1, 4;
3, 2, 4, 1, 5;
3, 4, 2, 5, 1, 6;
4, 3, 5, 2, 6, 1, 7;
4, 5, 3, 6, 2, 7, 1, 8;
...
Row number r contains permutation numbers form 1 to r.
If r is odd (r+1)/2, (r+1)/2-1, (r+1)/2+1,...r-1, 1, r.
If r is even r/2, r/2+1, r/2-1, ... r-1, 1, r.
-
T[n_, k_] := Abs[(2*k - 1 + (-1)^(n - k)*(2*n + 1))/4];
Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
-
T(n, k)=abs((2*k-1+(-1)^(n-k)*(2*n+1))/4) \\ Andrew Howroyd, Dec 31 2017
-
# Edited by M. F. Hasler, May 30 2020
def a(n):
t = int((math.sqrt(8*n-7) - 1)/2);
i = n-t*(t+1)/2;
return int(t/2)+1+int(i/2)*(-1)**(i+t+1)
A332104
Triangle read by rows in which row n >= 0 lists numbers from 0 to n starting at floor(n/2) and using alternatively larger respectively smaller numbers than the values used so far.
Original entry on oeis.org
0, 0, 1, 1, 0, 2, 1, 2, 0, 3, 2, 1, 3, 0, 4, 2, 3, 1, 4, 0, 5, 3, 2, 4, 1, 5, 0, 6, 3, 4, 2, 5, 1, 6, 0, 7, 4, 3, 5, 2, 6, 1, 7, 0, 8, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 0, 11, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12
Offset: 0
The table starts:
Row 0: 0;
Row 1: 0, 1;
Row 2: 1, 0, 2;
Row 3: 1, 2, 0, 3;
Row 4: 2, 1, 3, 0, 4;
Row 5: 2, 3, 1, 4, 0, 5;
Row 5: 3, 2, 4, 1, 5, 0, 6;
Row 6: 3, 4, 2, 5, 1, 6, 0, 7;
Row 7: 4, 3, 5, 2, 6, 1, 7, 0, 8;
Row 8: 4, 5, 3, 6, 2, 7, 1, 8, 0, 9;
Row 9: 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10;
Row 10: 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 0, 11; ...
Column 1 is floor(n/2) = A004526(n).
The "diagonal" (last element of each row) are the nonnegative integers A001477.
The first subdiagonal is the zero sequence A000004.
The second subdiagonal is the set of positive integers A000027.
The third subdiagonal is "all ones" sequence A000012.
And so on: in alternance, every other subdiagonal is the set of integers >= k, resp., k times the all ones sequence.
Cf.
A196199 (concatenate [-n .. n] for n=0, 1, 2...).
Cf. |
A128180| =
A209279 (based on a very similar idea with positive integers instead).
-
Table[Floor[(n + (-1)^(n - k)*k)/2], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 03 2020 *)
-
row(n)={ my(m=n\2, M=m, r=[m]); while(#r <= n, r=concat(r, if( n-M > m, M+=1, m-=1))); r}
-
T(n,k)=(n+(-1)^(n-k)*k)\2
Showing 1-3 of 3 results.
Comments