A128201 Union of positive squares and the odd numbers.
1, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 1
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Partial sums given by A157130. - Gerald Hillier, Feb 25 2009
See A176693 for the union of even numbers and the squares. - M. F. Hasler, Apr 19 2015
Programs
-
Mathematica
f[n_] := Block[{s = Range[n]^2, t}, Union[s, Range[1, Last@ s, 2]] // Sort]; f@ 12 (* Michael De Vlieger, Apr 16 2015 *)
-
PARI
A128201(n)=!(bittest(n=2*n-round(sqrt(2*n)),0)||issquare(n))+n \\ Based on Hiliers's formula. - M. F. Hasler, Apr 19 2015
-
PARI
is_A128201(n)=bittest(n,0)||issquare(n) \\ M. F. Hasler, Apr 19 2015
-
Python
from math import isqrt def A128201(n): def f(x): return n+(x>>1)-(isqrt(x)>>1) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Oct 02 2024
Formula
a(n) = f(n,1,1,2), where f(n,i,m,x) = if i=n then m; else if m+1=x^2 then f(n,i+1,m+1,x); else if m+1>x^2 then f(n,i+1,m+1,x+2); else f(n,i+1,m+2,x).
Set R(n) = 2*n - round(sqrt(2*n)); then a(n) = R(n) + sign(frac(sqrt(R(n)))) * (not(R(n) mod 2)). - Gerald Hillier, Apr 16 2015
Comments