cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128201 Union of positive squares and the odd numbers.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2007

Keywords

Comments

Range of A128200.
Positive numbers n such that n^((1 + n)/2) is an integer. - Gionata Neri, May 07 2016

Crossrefs

Partial sums given by A157130. - Gerald Hillier, Feb 25 2009
See A176693 for the union of even numbers and the squares. - M. F. Hasler, Apr 19 2015

Programs

  • Mathematica
    f[n_] := Block[{s = Range[n]^2, t}, Union[s, Range[1, Last@ s, 2]] // Sort]; f@ 12 (* Michael De Vlieger, Apr 16 2015 *)
  • PARI
    A128201(n)=!(bittest(n=2*n-round(sqrt(2*n)),0)||issquare(n))+n \\ Based on Hiliers's formula. - M. F. Hasler, Apr 19 2015
    
  • PARI
    is_A128201(n)=bittest(n,0)||issquare(n) \\ M. F. Hasler, Apr 19 2015
    
  • Python
    from math import isqrt
    def A128201(n):
        def f(x): return n+(x>>1)-(isqrt(x)>>1)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 02 2024

Formula

a(n) = f(n,1,1,2), where f(n,i,m,x) = if i=n then m; else if m+1=x^2 then f(n,i+1,m+1,x); else if m+1>x^2 then f(n,i+1,m+1,x+2); else f(n,i+1,m+2,x).
Set R(n) = 2*n - round(sqrt(2*n)); then a(n) = R(n) + sign(frac(sqrt(R(n)))) * (not(R(n) mod 2)). - Gerald Hillier, Apr 16 2015