cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128213 Expansion of (1-x+2x^2-2x^3)/(1-x+x^2)^2.

Original entry on oeis.org

1, 1, 1, -1, -4, -4, 1, 7, 7, -1, -10, -10, 1, 13, 13, -1, -16, -16, 1, 19, 19, -1, -22, -22, 1, 25, 25, -1, -28, -28, 1, 31, 31, -1, -34, -34, 1, 37, 37, -1, -40, -40, 1, 43, 43, -1, -46, -46, 1, 49, 49, -1, -52, -52, 1, 55, 55, -1, -58, -58, 1, 61, 61, -1
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

a(n+1) is the Hankel transform of {1,0,1,3,9,28,90,297,1001,3432,11934,...}, cf. A000245.
Binomial transform of A128214.
a(n+2) is the Hankel transform of A014138. - Paul Barry, Mar 15 2008

Programs

  • Mathematica
    Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 0, 100}] (* Benedict W. J. Irwin, Nov 05 2016 *)
  • PARI
    Vec((1-x+2*x^2-2*x^3)/(1-x+x^2)^2 + O(x^100)) \\ Michel Marcus, May 31 2014

Formula

a(n) = cos(Pi*n/3) + (2n/sqrt(3)-1/sqrt(3))*sin(Pi*n/3).
a(n) = y(n,n), where y(m+1,n) = y(m,n) - y(m-1,n), with y(0,n)=1 and y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016

A188126 Number of strictly increasing arrangements of 7 nonzero numbers in -(n+5)..(n+5) with sum zero.

Original entry on oeis.org

42, 152, 426, 1032, 2216, 4376, 8044, 13994, 23210, 37030, 57086, 85506, 124816, 178186, 249308, 342708, 463550, 618042, 813186, 1057238, 1359422, 1730468, 2182232, 2728362, 3383832, 4165678, 5092482, 6185216, 7466594, 8962070
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2011

Keywords

Examples

			Some solutions for n=6
-10..-10...-6...-7...-6..-11...-8..-10...-8..-11..-10...-9..-11..-11...-9...-9
.-9...-4...-3...-6...-5...-9...-7...-7...-7...-4...-7...-8...-9...-8...-6...-7
.-4...-2...-2...-4...-4...-3...-4...-6...-1...-3...-3...-3...-4...-4...-5...-4
..4....2...-1....1...-1...-1...-3...-1....1...-2...-1...-1....1....3...-4...-2
..5....3....1....3....3....4....5....6....3....1....1....5....2....4....7....4
..6....4....2....6....4....9....6....8....4....8....9....6...10....6....8....8
..8....7....9....7....9...11...11...10....8...11...11...10...11...10....9...10
		

Crossrefs

Row 7 of A188122.

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-2*a(n-7)+2*a(n-8)+a(n-9)-a(n-13)-2*a(n-14)+2*a(n-15)-a(n-16)+a(n-17)+a(n-19)-2*a(n-21)+a(n-22) =
208637*n/12960 +413*(-1)^n/1152 +6403*n^3/1296 +355951*n^2/28800 +11*(-1)^n*n^2/384 +13*(-1)^n*n/96 +28669*n^4/25920 +709*n^5/5400 +841*n^6/129600 +6124649/777600 + (157*A049347(n)+74*A049347(n-1))/486 + 5*A128214(n+3)/81 +2*b(n)/25 + A057079(n+2)/18 -(-1)^(floor((n+1)/2))*A000034(n+1)/8 where b(n) is the 5-periodic sequence (-3,-1,-1,2,3,...) with offset 0.
Empirical: G.f. -2*x *(21 +34*x +61*x^2 +111*x^3 +152*x^4 +206*x^5 +217*x^6 +240*x^7 +212*x^8 +172*x^9 +120*x^10 +77*x^11 +36*x^12 +9*x^13 +11*x^14 -x^15 +4*x^16 +4*x^18 -8*x^20 +4*x^21) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^7 ). - R. J. Mathar, Mar 21 2011
Showing 1-2 of 2 results.