cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128221 A128174 * A127701.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 1, 3, 1, 5, 1, 2, 1, 4, 1, 6, 1, 1, 3, 1, 5, 1, 7, 1, 2, 1, 4, 1, 6, 1, 8, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 12, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13
Offset: 1

Views

Author

Gary W. Adamson, Feb 19 2007

Keywords

Comments

Row sums = A024206: (1, 3, 5, 8, 11, 15, 19, ...). A128222 = A127701 * A128174.
Table T(n,k) = n, if k is odd, 1 if k is even; n, k > 0, read by antidiagonals. -Boris Putievskiy, Jan 30 2013

Examples

			From _Boris Putievskiy_, Jan 30 2013: (Start)
The start of the sequence as a table:
  1, 1, 1, 1, 1, 1, 1, ...
  2, 1, 2, 1, 2, 1, 2, ...
  3, 1, 3, 1, 3, 1, 3, ...
  4, 1, 4, 1, 4, 1, 4, ...
  5, 1, 5, 1, 5, 1, 5, ...
  6, 1, 6, 1, 6, 1, 6, ...
  7, 1, 7, 1, 7, 1, 7, ...
  ...
(End)
First few rows of the triangle are:
  1;
  1, 2;
  1, 1, 3;
  1, 2, 1, 4;
  1, 1, 3, 1, 5;
  1, 2, 1, 4, 1, 6;
  1, 1, 3, 1, 5, 1, 7;
  ...
		

Crossrefs

Programs

  • Mathematica
    a128221[n_, k_] := If[EvenQ[n-k], k, 1]/;1<=k<=n
    a128221[r_] := Table[a128221[n, k], {n, 1, r}, {k, 1, n}]
    TableForm[a128221[7]] (* triangle *)
    Flatten[a128221[10]] (* data *) (* Hartmut F. W. Hoft, Mar 08 2017 *)
    t[r_, c_] := If[ OddQ@ c, r, 1]; Table[t[k, n - k + 1], {n, 13}, {k, n}] // Flatten (* Robert G. Wilson v, Mar 09 2017 *)

Formula

A128174 * A127701 as infinite lower triangular matrices. By columns, k-th column = k, 1, k, ...; k=1,2,3,...
From Boris Putievskiy, Jan 30 2013: (Start)
As table T(n,k) = (1+(-1)^k)/2 - (-1+(-1)^k)*n/2.
As linear sequence a(n) = (1+(-1)^A004736(n))/2 - (-1+(-1)^A004736(n))*A002260(n)/2. a(n) = (1+(-1)^j)/2 - (-1+(-1)^j)*i/2,
where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). (End)

Extensions

More terms from Robert G. Wilson v, Mar 09 2017