cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128229 A natural number transform, inverse of signed A094587.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 19 2007

Keywords

Comments

Signed version of the transform (with -1, -2, -3, ... in the subdiagonal) gives A094587 having row sums A000522: (1, 2, 5, 16, 65, 236, ...). Unsigned inverse gives signed A094587 (with alternate signs); giving row sums = a signed variation of A094587 as follows: (1, 0, 1, -2, 9, -44, 265, -1854, ...). Binomial transform of the triangle = A093375.
Eigensequence of the triangle = A000085 starting (1, 2, 4, 10, 26, 76, ...). - Gary W. Adamson, Dec 29 2008

Examples

			First few rows of the triangle are:
1;
1, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 0, 4, 1;
0, 0, 0, 0, 5, 1;
0, 0, 0, 0, 0, 6, 1;
0, 0, 0, 0, 0, 0, 7, 1;
...
		

Crossrefs

Programs

  • Mathematica
    a128229[n_] := Table[Which[r==q, 1, r-1==q, q, True, 0], {r, 1, n}, {q, 1, r}]
    Flatten[a128229[13]] (* data *)
    TableForm[a128229[8]] (* triangle *)
    (* Hartmut F. W. Hoft, Jun 10 2017 *)
  • Python
    def T(n, k): return 1 if n==k else n - 1 if k==n - 1 else 0
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 10 2017

Formula

Infinite lower triangular matrix with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal.
T(n,n)=1, T(n,n-1)=n-1 and T(n,k)=0 for 1<=k<=n, 1<=n. - Hartmut F. W. Hoft, Jun 10 2017