A128235 Triangle read by rows: T(n,k) is the number of sequences of length n on the alphabet {0,1,2,3}, containing k subsequences 00 (0<=k<=n-1).
1, 4, 15, 1, 57, 6, 1, 216, 33, 6, 1, 819, 162, 36, 6, 1, 3105, 756, 189, 39, 6, 1, 11772, 3402, 945, 216, 42, 6, 1, 44631, 14931, 4536, 1143, 243, 45, 6, 1, 169209, 64314, 21168, 5778, 1350, 270, 48, 6, 1, 641520, 273051, 96633, 28323, 7128, 1566, 297, 51
Offset: 0
Examples
T(4,2) = 6 because we have 0001, 0002, 0003, 1000, 2000 and 3000. Triangle starts: 1; 4; 15, 1; 57, 6, 1; 216, 33, 6, 1; 819, 162, 36, 6, 1;
Links
- Alois P. Heinz, Rows n = 0..150, flattened
Programs
-
Maple
G:=(1+z-t*z)/(1-3*z-3*z^2-t*z+3*t*z^2): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
Formula
G.f.: (1+z-tz)/(1-3z-3z^2-tz+3tz^2).
Comments