cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128235 Triangle read by rows: T(n,k) is the number of sequences of length n on the alphabet {0,1,2,3}, containing k subsequences 00 (0<=k<=n-1).

Original entry on oeis.org

1, 4, 15, 1, 57, 6, 1, 216, 33, 6, 1, 819, 162, 36, 6, 1, 3105, 756, 189, 39, 6, 1, 11772, 3402, 945, 216, 42, 6, 1, 44631, 14931, 4536, 1143, 243, 45, 6, 1, 169209, 64314, 21168, 5778, 1350, 270, 48, 6, 1, 641520, 273051, 96633, 28323, 7128, 1566, 297, 51
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2007

Keywords

Comments

Row n has n terms (n>=1). T(n,0) = A125145(n). Sum(k*T(n,k), k=0..n-1) = (n-1)*4^(n-2) = A002697(n-1).

Examples

			T(4,2) = 6 because we have 0001, 0002, 0003, 1000, 2000 and 3000.
Triangle starts:
1;
4;
15,    1;
57,    6,  1;
216,  33,  6, 1;
819, 162, 36, 6, 1;
		

Crossrefs

Programs

  • Maple
    G:=(1+z-t*z)/(1-3*z-3*z^2-t*z+3*t*z^2): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form

Formula

G.f.: (1+z-tz)/(1-3z-3z^2-tz+3tz^2).