cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A128290 If p(x) is the product of the digits of the number x and s(x) the sum of the digits then the sequence lists all the numbers k for which p(s(k)) = s(p(k)), with k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 63, 109, 123, 132, 158, 185, 190, 199, 208, 213, 231, 280, 289, 298, 307, 312, 321, 333, 370, 406, 458, 460, 469, 485, 496, 505, 518, 548, 550, 556, 559, 565, 581, 584, 595, 604, 640, 649, 655, 667, 676, 694, 703, 730, 766, 802
Offset: 1

Views

Author

Keywords

Examples

			496 is a term: s(496) = 4+9+6 = 19, p(s(496)) = 1*9 = 9, p(496) = 4*9*6 = 216, s(p(496)) = 2+1+6 = 9.
845 is a term: s(845) = 8+4+5 = 17, p(s(845)) = 1*7 = 7, p(845) = 8*4*5 = 160, s(p(845)) = 1+6+0 = 7.
From _Jon E. Schoenfield_, Jun 15 2024: (Start)
Expressed more visually:
.
          Sum                         Sum
   496 --------> 19            845 --------> 17
    |    4+9+6    |             |    8+4+5    |
  P | 4         P |           P | 8         P |
  r | *         r | 1         r | *         r | 1
  o | 9         o | *         o | 4         o | *
  d | *         d | 9         d | *         d | 7
    | 6           |             | 5           |
    v     Sum     v             v     Sum     v
   216 -------->  9            160 -------->  7
         2+1+6                       1+6+0
(End)
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,b,c; a:=convert(q,base,10): b:=convert(a,`+`): c:=convert(a,`*`):
    if convert(convert(b,base,10),`*`)=convert(convert(c,base,10),`+`) then q; fi; end: seq(P(i),i=1..10^3); # Paolo P. Lava, Jun 15 2024
  • Mathematica
    p[n_] := Times @@ IntegerDigits[n]; Select[Range[1000], p[DigitSum[#]] == DigitSum[p[#]] &] (* Paolo Xausa, Jun 17 2024 *)
  • Python
    from math import prod
    def ok(n):
        d = list(map(int, str(n)))
        p, s = prod(d), sum(d)
        return sum(map(int, str(p))) == prod(map(int, str(s)))
    print([k for k in range(1, 803) if ok(k)]) # Michael S. Branicky, Jun 15 2024
Showing 1-1 of 1 results.