cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128301 Indices of squares (of primes) in the semiprimes.

Original entry on oeis.org

1, 3, 9, 17, 40, 56, 90, 114, 164, 253, 289, 404, 484, 533, 634, 783, 973, 1031, 1233, 1373, 1452, 1683, 1842, 2112, 2483, 2676, 2779, 2995, 3108, 3320, 4124, 4384, 4775, 4926, 5593, 5741, 6172, 6644, 6962, 7448, 7955, 8108, 8978, 9147, 9512, 9697, 10842
Offset: 1

Views

Author

Rick L. Shepherd, Feb 25 2007

Keywords

Comments

A001358(a(n)) = A001248(n) = A000040(n)^2.
Numbers n with property that tau(semiprime(n)) is not semiprime. - Juri-Stepan Gerasimov, Oct 15 2010

Examples

			a(4) = 17 as 49 = 7^2 = prime(4)^2, the fourth square in the semiprimes, is the seventeenth semiprime.
		

Crossrefs

Programs

  • Mathematica
    With[{sp=Select[Range[50000],PrimeOmega[#]==2&]},Flatten[Table[ Position[ sp,Prime[ n]^2],{n,Floor[Sqrt[Length[sp]]]}]]] (* Harvey P. Dale, Nov 17 2014 *)
  • PARI
    a(n)=my(s=0,i=0); n=prime(n)^2; forprime(p=2, sqrt(n), s+=primepi(n\p); i++); s - i * (i-1)/2
    \\ Charles R Greathouse IV, Apr 21 2011
    
  • Perl
    -MMath::Pari=factorint,PARI -wle 'my $c = 0; my $s = PARI 1; while (1) { ++$s; my($sp, $si) = @{factorint($s)}; next if @$sp > 2; next if $si->[0] + (@$si > 1 ? $si->[1] : 0) != 2; ++$c; print "$s => $c" if @$sp == 1}' # Hugo van der Sanden, Sep 25 2007
    
  • Python
    from math import isqrt
    from sympy import prime, primepi
    def A128301(n):
        m = prime(n)**2
        return int(sum(primepi(m//prime(k))-k+1 for k in range(1,n+1))) # Chai Wah Wu, Jul 23 2024