A128301 Indices of squares (of primes) in the semiprimes.
1, 3, 9, 17, 40, 56, 90, 114, 164, 253, 289, 404, 484, 533, 634, 783, 973, 1031, 1233, 1373, 1452, 1683, 1842, 2112, 2483, 2676, 2779, 2995, 3108, 3320, 4124, 4384, 4775, 4926, 5593, 5741, 6172, 6644, 6962, 7448, 7955, 8108, 8978, 9147, 9512, 9697, 10842
Offset: 1
Keywords
Examples
a(4) = 17 as 49 = 7^2 = prime(4)^2, the fourth square in the semiprimes, is the seventeenth semiprime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{sp=Select[Range[50000],PrimeOmega[#]==2&]},Flatten[Table[ Position[ sp,Prime[ n]^2],{n,Floor[Sqrt[Length[sp]]]}]]] (* Harvey P. Dale, Nov 17 2014 *)
-
PARI
a(n)=my(s=0,i=0); n=prime(n)^2; forprime(p=2, sqrt(n), s+=primepi(n\p); i++); s - i * (i-1)/2 \\ Charles R Greathouse IV, Apr 21 2011
-
Perl
-MMath::Pari=factorint,PARI -wle 'my $c = 0; my $s = PARI 1; while (1) { ++$s; my($sp, $si) = @{factorint($s)}; next if @$sp > 2; next if $si->[0] + (@$si > 1 ? $si->[1] : 0) != 2; ++$c; print "$s => $c" if @$sp == 1}' # Hugo van der Sanden, Sep 25 2007
-
Python
from math import isqrt from sympy import prime, primepi def A128301(n): m = prime(n)**2 return int(sum(primepi(m//prime(k))-k+1 for k in range(1,n+1))) # Chai Wah Wu, Jul 23 2024
Comments